Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenomena first-order

Under these first-order conditions the rates of nitration of a number of compounds with acetyl nitrate in acetic anhydride have been determined. The data show that the rates of nitration of compounds bearing activating substituents reach a limit by analogy with the similar phenomenon shown in nitration in aqueous sulphuric and perchloric acids ( 2.5) and in solutions of nitric acid in sulpholan and nitro-methane ( 3.3), this limit has been taken to be the rate of encounter of the nitrating entity with the aromatic molecule. [Pg.86]

Strkcttire inflkence. The specificity of interphase transfer in the micellar-extraction systems is the independent and cooperative influence of the substrate molecular structure - the first-order molecular connectivity indexes) and hydrophobicity (log P - the distribution coefficient value in the water-octanole system) on its distribution between the water and the surfactant-rich phases. The possibility of substrates distribution and their D-values prediction in the cloud point extraction systems using regressions, which consider the log P and values was shown. Here the specificity of the micellar extraction is determined by the appearance of the host-guest phenomenon at molecular level and the high level of stmctural organization of the micellar phase itself. [Pg.268]

On the basis of data obtained the possibility of substrates distribution and their D-values prediction using the regressions which consider the hydrophobicity and stmcture of amines was investigated. The hydrophobicity of amines was estimated by the distribution coefficient value in the water-octanole system (Ig P). The molecular structure of aromatic amines was characterized by the first-order molecular connectivity indexes ( x)- H was shown the independent and cooperative influence of the Ig P and parameters of amines on their distribution. Evidently, this fact demonstrates the host-guest phenomenon which is inherent to the organized media. The obtained in the research data were used for optimization of the conditions of micellar-extraction preconcentrating of metal ions with amines into the NS-rich phase with the following determination by atomic-absorption method. [Pg.276]

In this chapter studies of physical effects within the elastic deformation range were extended into stress regions where there are substantial contributions to physical processes from both elastic and inelastic deformation. Those studies include the piezoelectric responses of the piezoelectric crystals, quartz and lithium niobate, similar work on the piezoelectric polymer PVDF, ferroelectric solids, and ferromagnetic alloys which exhibit second- and first-order phase transformations. The resistance of metals has been investigated along with the distinctive shock phenomenon, shock-induced polarization. [Pg.136]

A third method, or phenomenon, capable of generating a pseudo reaction order is exemplified by a first-order solution reaction of a substance in the presence of its solid phase. Then if the dissolution rate of the solid is greater than the reaction rate of the dissolved solute, the solute concentration is maintained constant by the solubility equilibrium and the first-order reaction becomes a pseudo-zero-order reaction. [Pg.24]

We know that another interesting phenomenon occurs when the temperature increases up to the bulk transition Tj. Previous studies have shown that the APB is wetted by the disordered phase a large layer of disordered phase develops in between the two ordered domains. In other words, the APB is splitted into two order-disorder interfaces, whose separation diverges as In(T), - T). We display in Fig. 5 the 2-dlmensional maps for T=1687 K, i.e. very close to the first-order transition. As expected, we see that the APB separates into two order-disorder interfaces. Moreover, the width of the penetrating disordered layer varies along the APB. This means that each order-disorder interface develops its own transverse fluctuations and that the APB begins to behave as two separate objects. [Pg.126]

Curve 1 represents the total energy of the hydrogen molecule-ion as calculated by the first-order perturbation theory curve 2, the naive potential function obtained on neglecting the resonance phenomenon curve 3, the potential function for the antisymmetric eigenfunction, leading to elastic collision. [Pg.43]

It will be seen that the second-order treatment leads to results which deviate more from the correct values than do those given by the first-order treatment alone. This is due in part to the fact that the second-order energy was derived without considerar-tion of the resonance phenomenon, and is probably in error for that reason. The third-order energy is also no doubt appreciable. It can be concluded from table 3 that the first-order perturbation calculation in problems of this type will usually lead to rather good results, and that in general the second-order term need not be evaluated. [Pg.47]

The results of our calculations based on both the static and dynamic theories show that most of the nonbenzenoid cyclic conjugated systems examined exhibit in a greater or lesser degree a marked double-bond fixation. The static theory indicates that even in benzene there exists a hidden tendency to distort into a skewed structure and that such a tendency is actually realized in [4n-f-2] annulenes larger than a certain critical size. In nonalternant hydrocarbons bond distortion is a rather common phenomenon. Fulvenes, fulvalenes and certain peri-condensed nonalternant hydrocarbons undergo a first-order bond distortion, and... [Pg.39]

The large viscosity increases that accompany increased polymer concentrations have a strong effect on reactor performance. This phenomenon is illustrated through a simplified yet realistic example (also used in Reference 1 to study the effects of radial convection). In this case the polymerization rate is first order in monomer concentration and the physical properties are constant, except for viscosity, which is given by the following expression ... [Pg.340]

The important phenomenon of exponential decay is the prototype first-order reaction and provides an informative introduction to first-order kinetic principles. Consider an important example from nuclear physics the decay of the radioactive isotope of carbon, carbon-14 (or C). This form of carbon is unstable and decays over time to form nitrogen-14 ( N) plus an electron (e ) the reaction can be written as... [Pg.110]

The polarizability expresses the capacity of a system to be deformed under the action of electric field it is the first-order response. The hyperpolarizabilities govern the non linear processes which appear with the strong fields. These properties of materials perturb the propagation of the light crossing them thus some new phenomenons (like second harmonic and sum frequency generation) appear, which present a growing interest in instrumentation with the lasers development. The necessity of prediction of these observables requires our attention. [Pg.261]

Perturbation theory also provides the natural mathematical framework for developing chemical concepts and explanations. Because the model H(0) corresponds to a simpler physical system that is presumably well understood, we can determine how the properties of the more complex system H evolve term by term from the perturbative corrections in Eq. (1.5a), and thereby elucidate how these properties originate from the terms contained in //(pertJ. For example, Eq. (1.5c) shows that the first-order correction E11 is merely the average (quantum-mechanical expectation value) of the perturbation H(pert) in the unperturbed eigenstate 0), a highly intuitive result. Most physical explanations in quantum mechanics can be traced back to this kind of perturbative reasoning, wherein the connection is drawn from what is well understood to the specific phenomenon of interest. [Pg.5]

Pressure-induced amorphization of solids has received considerable attention recently in physical and material sciences, although the first reports of the phenomenon appeared in 1963 in the geophysical literature (actually amorphization on reducing the pressure [18]). During isothermal or near isothermal compression, some solids, instead of undergoing an equilibrium transition to a more stable high-pressure polymorph, become amorphous. This is known as pressure-induced amorphization. In some systems the transition is sharp and mimics a first-order phase transition, and a discontinuous drop in the volume of the substance is observed. Occasionally it is strictly not an amorphous phase that is formed, but rather a highly disordered denser nano-crystalline solid. Here we are concerned with the situation where a true amorphous solid is formed. [Pg.143]

It is useful to anticipate here that my analysis of the kinetics of the polymerizations in solution indicates the prevalence of unimolecular propagation in some systems down to quite low m. Moreover, we will see that the corresponding first-order rate constant is influenced by the nature of the diluent. Such an effect seems paradoxical, and as it appears to be a newly recognized phenomenon, I will present here my explanation of it which is as follows. [Pg.354]


See other pages where Phenomena first-order is mentioned: [Pg.194]    [Pg.1252]    [Pg.731]    [Pg.1190]    [Pg.251]    [Pg.461]    [Pg.167]    [Pg.568]    [Pg.3]    [Pg.631]    [Pg.232]    [Pg.119]    [Pg.197]    [Pg.46]    [Pg.99]    [Pg.740]    [Pg.332]    [Pg.116]    [Pg.484]    [Pg.340]    [Pg.196]    [Pg.71]    [Pg.196]    [Pg.101]    [Pg.238]    [Pg.658]    [Pg.232]    [Pg.90]    [Pg.123]    [Pg.233]    [Pg.205]    [Pg.221]    [Pg.67]    [Pg.245]    [Pg.212]    [Pg.101]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



Ordering phenomena

© 2024 chempedia.info