Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy phenols

However, a second mole of alcohol or hemiformal caimot be added at the ordinary pH of such solutions. The equiUbrium constant for hemiformal formation depends on the nature of the R group of the alcohol. Using nmr spectroscopy, a group of alcohols including phenol has been examined in solution with formaldehyde (15,16). The spectra indicated the degree of hemiformal formation in the order of >methanol > benzyl alcohol >phenol. Hemiformal formation provides the mechanism of stabilization methanol is much more effective than phenol in this regard. [Pg.293]

An azo coupling reaction of monatomic phenols with diazotized 4-nitroaniline has been investigated. By HPLC, NMR, elemental analysis, UV and IR spectroscopy it has been shown that the azo derivatives of o-guaiacol, o- and m-cresols interact with an excess of diazonium in pH interval of 4,5-9,5 and form corresponding 4,4-di(4-nitrophenylazo)-2,5-cyclohexadien-1 -ones. [Pg.62]

Many of the properties oj -hydroxypyridines are typical of phenols. It was long assumed that they existed exclusively in the hydroxy form, and early physical measurements seemed to confirm this. For example, the ultraviolet spectrum of a methanolic solution of 3-hydroxypyridine is very similar to that of the 3-methoxy analog, and the value of the dipole moment of 3-hydroxypyridine obtained in dioxane indicates little, if any, zwitterion formation. However, it has now become clear that the hydroxy form is greatly predominant only in solvents of low dielectric constant. Comparison of the pK values of 3-hydroxypyridine with those of the alternative methylated forms indicated that the two tautomeric forms are of comparable stability in aqueous solution (Table II), and this was confirmed using ultraviolet spectroscopy. The ratios calculated from the ultraviolet spectral data are in good agreement with those de-... [Pg.353]

There is supporting evidence in the literature for the validity of this method two cases in particular substantiate it. In one, tests were made on plastics heated in the pressure of air. Differential infrared spectroscopy was used to determine the chemical changes at three temperatures, in the functional groups of a TP acrylonitrile, and a variety of TS phenolic plastics. The technique uses a film of un-aged plastic in the reference beam and the aged sample in the sample beam. Thus, the difference between the reference and the aged sample is a measure of the chemical changes. [Pg.117]

The molecular weights and molecular weight distributions (MWD) of phenolic oligomers have been evaluated using gel permeation chromatography (GPC),23,24 NMR spectroscopy,25 vapor pressure osmometry (VPO),26 intrinsic viscosity,27 and more recently matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).28... [Pg.385]

Various ionization methods were used to bombard phenol-formaldehyde oligomers in mass spectroscopic analysis. The molecular weights of resole resins were calculated using field desorption mass spectroscopy of acetyl-derivatized samples.74 Phenol acetylation was used to enable quantitative characterization of all molecular fractions by increasing the molecular weights in increments of 42. [Pg.408]

Network properties and microscopic structures of various epoxy resins cross-linked by phenolic novolacs were investigated by Suzuki et al.97 Positron annihilation spectroscopy (PAS) was utilized to characterize intermolecular spacing of networks and the results were compared to bulk polymer properties. The lifetimes (t3) and intensities (/3) of the active species (positronium ions) correspond to volume and number of holes which constitute the free volume in the network. Networks cured with flexible epoxies had more holes throughout the temperature range, and the space increased with temperature increases. Glass transition temperatures and thermal expansion coefficients (a) were calculated from plots of t3 versus temperature. The Tgs and thermal expansion coefficients obtained from PAS were lower titan those obtained from thermomechanical analysis. These differences were attributed to micro-Brownian motions determined by PAS versus macroscopic polymer properties determined by thermomechanical analysis. [Pg.416]

Ultralow-monol polyols, 223 Ultrapek, 327, 328 Ultraviolet (UV) radiation, 209 Ultraviolet spectroscopy, 490 Unimolecular micelle, 58 United States, phenolic production in, 375 Unsaturated maleate/O-phthalate/ 1,2-propanediol polyester prepolymer, 101-102 Unsaturated polyester resins (UPRs), 19, 29-30, 58-59... [Pg.604]

Complexes. The structure of an n a charge-transfer complex between quinoxaline and two iodine atoms has been obtained by X-ray analysis and its thermal stability compared with those of related complexes. The hydrogen bond complex between quinoxaline and phenol has been studied by infrared spectroscopy and compared with many similar complexes. Adducts of quinoxaline with uranium salts and with a variety of copper(II) alkano-ates have been prepared, characterized, and studied with respect to IR spectra or magnetic properties, respectively. [Pg.94]

Spectroscopy of the PES for reactions of transition metal (M ) and metal oxide cations (MO ) is particularly interesting due to their rich and complex chemistry. Transition metal M+ can activate C—H bonds in hydrocarbons, including methane, and activate C—C bonds in alkanes [18-20] MO are excellent (and often selective) oxidants, capable of converting methane to methanol [21] and benzene to phenol [22-24]. Transition metal cations tend to be more reactive than the neutrals for two general reasons. First, most neutral transition metal atoms have a ground electronic state, and this... [Pg.333]

Standardisation of EPDM characterisation tests (molecular composition, stabiliser and oil content) for QC and specification purposes was reported [64,65]. Infrared spectroscopy (rather than HPLC or photometry) is recommended for the determination of the stabiliser content (hindered phenol type) of EP(D)M [65]. Determination of the oil content of oil-extended EPDM is best carried out by Soxhlet extraction using MEK as a solvent [66], A round robin test was reported that evaluated the various techniques currently used in the investigation of unknown rubber compounds (passenger tyre tread stock formulations) [67]. [Pg.35]

Polymer/additive analysis then usually proceeds by separation of polymer and additives (cf. Scheme 2.12) using one out of many solvent extraction techniques (cf. Chapter 3). After extraction the residue is pressed into a thin film to verify that all extractables have been removed. UV spectroscopy is used for verification of the presence of components with a chromophoric moiety (phenolic antioxidants and/or UV absorbers) and IR spectroscopy to verify the absence of IR bands extraneous to the polymer. The XRF results before and after extraction are compared, especially when the elemental analysis does not comply with the preliminary indications of the nature of the additive package. This may occur for example in PA6/PA6.6 blends where... [Pg.44]

There have been some examples of the use of LDMS applied to the analysis of compounds separated via TLC, although not specifically dealing with polymer additives [852]. Dewey and Finney [838] have described direct TLC-spectroscopy and TLC-LMMS as applied to the analysis of lubricating oil additives (phenolic and amine antioxidants, detergents, dispersants, viscosity index improvers, corrosion inhibitors and metal deactivators). Also a series of general organics and ionic surfactants were analysed by means of direct normal-phase HPTLC-LMMS [837]. Novak and Hercules [858] have... [Pg.542]


See other pages where Spectroscopy phenols is mentioned: [Pg.221]    [Pg.280]    [Pg.374]    [Pg.124]    [Pg.304]    [Pg.884]    [Pg.949]    [Pg.41]    [Pg.93]    [Pg.632]    [Pg.633]    [Pg.635]    [Pg.513]    [Pg.32]    [Pg.546]    [Pg.127]    [Pg.387]    [Pg.398]    [Pg.407]    [Pg.100]    [Pg.33]    [Pg.275]    [Pg.231]    [Pg.183]    [Pg.349]    [Pg.546]    [Pg.259]    [Pg.249]    [Pg.6]    [Pg.182]    [Pg.476]    [Pg.44]    [Pg.249]    [Pg.309]    [Pg.309]    [Pg.452]   
See also in sourсe #XX -- [ Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 ]




SEARCH



Infrared spectroscopy phenols

Nuclear magnetic resonance spectroscopy phenols

Phenol IR spectroscopy

Phenol NMR spectroscopy

Phenolics Infrared spectroscopy

Phenolics Nuclear Magnetic Resonance spectroscopy

Phenolics Spectroscopy

Phenols Fourier transform-infrared spectroscopy

Spectroscopy of Alcohols and Phenols

Spectroscopy of Alcohols, Phenols, and Ethers

Spectroscopy, of phenolics

Ultraviolet spectroscopy phenolic antioxidants

Ultraviolet visible spectroscopy phenols

© 2024 chempedia.info