Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols phosgene

Perchloroethylene Petroleum hydrocarbons Phosphoric acid esters Phenol Phosgene... [Pg.152]

Therefore, much effort has been devoted to the research of new industrializable routes to fluorinated aromatics derivatives which are as far as possible versatile and without the drawbacks of classical processes. Among the reported reactions (refs. 4-7) aryl fluoroformate decarboxylation seems to be very attractive. Aryl fluoroformates are easily prepared from the corresponding phenol, phosgene and anhydrous hydrogen fluoride, which are widely available and cheap raw materials. [Pg.302]

CH2 CCl2- Colourless liquid, b.p. 32°C, manufactured by the dehydrochlorination of trichloroethane. In the presence of light and air, it decomposes with the evolution of HCI, phosgene, and methanal and deposition of some polyvinylidene chloride. Consequently it must be stored away from light and in the presence of dissolved inhibitors (such as phenols and amines). Under the influence of... [Pg.420]

The historical direct reaction route, which utilised phosgenation of a solution of BPA in pyridine, proved inefficient commercially because of the need for massive pyridine recycle. Calcium hydroxide was used as an HCl scavenger for a period of time. In the historical transesterification process, BPA and diphenyl carbonate are heated in the melt in the presence of a catalyst, driving off by-product phenol, which is recycled to diphenyl carbonate. Using a series of reactors providing higher heat and vacuum, the product polymer was eventually produced as a neat melt. [Pg.283]

An analogue of the transesterification process has also been demonstrated, in which the diacetate of BPA is transesterified with dimethyl carbonate, producing polycarbonate and methyl acetate (33). Removal of the methyl acetate from the equihbrium drives the reaction to completion. Methanol carbonylation, transesterification using phenol to diphenyl carbonate, and polymerization using BPA is commercially viable. The GE plant is the first to produce polycarbonate via a solventiess and phosgene-free process. [Pg.284]

Carbonates ate manufactured by essentially the same method as chloroformates except that more alcohol is required in addition to longer reaction times and higher temperatures. The products are neutralized, washed, and distilled. Corrosion-resistant equipment similar to that described for the manufacture of chloroformates is requited. Diaryl carbonates are prepared from phosgene and two equivalents of the sodium phenolates or with phenols and various... [Pg.44]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

The terminal R groups can be aromatic or aliphatic. Typically, they are derivatives of monohydric phenoHc compounds including phenol and alkylated phenols, eg, /-butylphenol. In iaterfacial polymerization, bisphenol A and a monofunctional terminator are dissolved in aqueous caustic. Methylene chloride containing a phase-transfer catalyst is added. The two-phase system is stirred and phosgene is added. The bisphenol A salt reacts with the phosgene at the interface of the two solutions and the polymer "grows" into the methylene chloride. The sodium chloride by-product enters the aqueous phase. Chain length is controlled by the amount of monohydric terminator. The methylene chloride—polymer solution is separated from the aqueous brine-laden by-products. The facile separation of a pure polymer solution is the key to the interfacial process. The methylene chloride solvent is removed, and the polymer is isolated in the form of pellets, powder, or slurries. [Pg.270]

Diphenyl carbonate, an alternative source of the carbonate group to phosgene, may be obtained by reacting phenol with phosgene in acqueous caustic soda solution, the reaction being accelerated by tertiary amines. The diphenyl carbonate can be purified by redistillation. [Pg.558]

The attractive possibility of dissolving the bis-phenol A in caustic soda solution and bubbling phosgene into it is not practical since the polymer is insoluble in the caustic soda and precipitates out at a low and variable molecular weight. [Pg.560]

Typically in such a process the bis-phenol A is dissolved in about ten times its weight of pyridine and vigorously stirred at 25-35°C. Phosgene is then bubbled into the solution and in a few minutes the pyridine hydrochloride starts to precipitate. As polymer is formed the viscosity of the solution increases and eventually becomes too great for stirring. The polymer is then recovered by the addition of a solvent such as methyl alcohol which dissolves the pyridine hydrochloride but precipitates the polymer. [Pg.560]

A variation of this process involves the formation of a preformed pyridine-phosgene complex. Polymerisation will then be effected by adding a solution of bis-phenol A. [Pg.560]

Polycarbonates with superior notched impact strength, made by reacting bisphenol A, bis-phenol S and phosgene, were introduced in 1980 (Merlon T). These copolymers have a better impact strength at low temperatures than conventional polycarbonate, with little or no sacrifice in transparency. These co-carbonate polymers are also less notch sensitive and, unlike for the standard bis-phenol A polymer, the notched impact strength is almost independent of specimen thickness. Impact resistance increases with increase in the bis-phenol S component in the polymer feed. Whilst tensile and flexural properties are similar to those of the bis-phenol A polycarbonate, the polyco-carbonates have a slightly lower deflection temperature under load of about 126°C at 1.81 MPa loading. [Pg.566]

Diphenol carbonate is produced by the reaction of phosgene and phenol. A new approach to diphenol carbonate and non-phosgene route is by the reaction of CO and methyl nitrite using Pd/alumina. Dimethyl carbonate is formed which is further reacted with phenol in presence of tetraphenox titanium catalyst. Decarbonylation in the liquid phase yields diphenyl carbonate. [Pg.338]

The reaction with disubstituted formamides and phosphorus oxychloride, called the Vilsmeier or the Vilsmeier-Haack reaction,is the most common method for the formylation of aromatic rings. However, it is applicable only to active substrates, such as amines and phenols. An intramolecular version is also known.Aromatic hydrocarbons and heterocycles can also be formylated, but only if they are much more active than benzene (e.g., azulenes, ferrocenes). Though A-phenyl-A-methyl-formamide is a common reagent, other arylalkyl amides and dialkyl amides are also used. Phosgene (COCI2) has been used in place of POCI3. The reaction has also been carried out with other amides to give ketones (actually an example of 11-14),... [Pg.715]

M-NHC catalysts in this area. Metal catalysed carbonylation also provides an alternative synthetic ronte to the prodnction of materials that traditionally reqnire highly toxic precnrsors, like phosgene. This section discnsses carbonylation of aryl hahdes, oxidative carbonylation of phenolic and amino componnds, carbonylation of aryl diazoninm ions, alcohol carbonylation, carbonylative amidation, and copolymerisation of ethylene and CO. [Pg.226]

Synthetic routes that access appropriately substituted thienobenzazepines are also quite important for medicinal chemistry stracture activity relationship studies, and many involve similar bond connectivity strategies. One notable example employs the use of conunercially available 4-methyl-3-nitrophenol (Scheme 6.3). Methylation of the phenol followed by bromination, hydrolysis, and oxidation of the benzylic alcohol afforded aldehyde 9 in quantitative yield. Treatment of this aldehyde with 5-lithio-2-methylthiophene provided, after dehydroxylation, nitro intermediate A in good overall yield. Reduction of the nitro functionality and treatment with phosgene presented the corresponding isocyanide which upon cychzation using aluminum trichloride in a Friedel-Crafts fashion afforded the... [Pg.65]

Bisphenol A, whose official chemical name is 2,2-bis(4-hydroxyphenyl)propane, is a difunctional monomer with two reactive hydroxyl groups, as shown in Fig. 20,2. It polymerizes svith dicarbonyl organic monomers, such as phosgene or diphenyl carbonate, which are illustrated in Fig. 20.3. During polymerization, shown in Fig. 20.4, the hydroxyl groups of the bisphenol A deprotonate in the presence of a base. After deprotonation, the oxygen atoms on the bisphenol A residue form ester bonds with the dicarbonyl compounds. The polymerization process terminates when a monohydric phenol reacts with the growing chain end. [Pg.317]

Aromatic polycarbonates are currently manufactured either by the interfacial polycondensation of the sodium salt of diphenols such as bisphenol A with phosgene (Reaction 1, Scheme 22) or by transesterification of diphenyl carbonate (DPC) with diphenols in the presence of homogeneous catalysts (Reaction 2, Scheme 22). DPC is made by the oxidative carbonylation of dimethyl carbonate. If DPC can be made from cyclic carbonates by transesterification with solid catalysts, then an environmentally friendlier route to polycarbonates using C02 (instead of COCl2/CO) can be established. Transesterifications are catalyzed by a variety of materials K2C03, KOH, Mg-containing smectites, and oxides supported on silica (250). Recently, Ma et al. (251) reported the transesterification of dimethyl oxalate with phenol catalyzed by Sn-TS-1 samples calcined at various temperatures. The activity was related to the weak Lewis acidity of Sn-TS-1 (251). [Pg.130]


See other pages where Phenols phosgene is mentioned: [Pg.21]    [Pg.87]    [Pg.357]    [Pg.10]    [Pg.21]    [Pg.87]    [Pg.357]    [Pg.10]    [Pg.262]    [Pg.103]    [Pg.278]    [Pg.283]    [Pg.283]    [Pg.284]    [Pg.40]    [Pg.41]    [Pg.28]    [Pg.37]    [Pg.561]    [Pg.98]    [Pg.87]    [Pg.1036]    [Pg.752]    [Pg.226]    [Pg.40]    [Pg.40]    [Pg.65]    [Pg.65]    [Pg.228]    [Pg.233]    [Pg.415]    [Pg.105]   
See also in sourсe #XX -- [ Pg.198 , Pg.200 , Pg.471 ]




SEARCH



Phosgene phenol chloroformate

© 2024 chempedia.info