Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxides dienes

This novel type of peroxide-diene oxygen transfer is most interesting and it is hoped that it will be extended to simpler systems where its general utility could be examined. Reaction (313) is also unusual since the formation of the endo peroxide is a characteristic reaction of singlet oxygen. [Pg.121]

Ethylene-propylene-diene rubber is polymerized from 60 parts ethylene, 40 parts propylene, and a small amount of nonconjugated diene. The nonconjugated diene permits sulfur vulcanization of the polymer instead of using peroxide. [Pg.1064]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Unsaturated transaimular peroxides from cycHc dienes have been selectively reduced to the saturated peroxide analogues (114). For example. [Pg.110]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Ethylene—Propylene Rubber. Ethylene and propjiene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) mbber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional mbbers such as SBR and PBD. Ethylene—propylene mbber (EPR) requires peroxide vulcanization. [Pg.232]

Peroxides. Peroxides are probably the most common materials used after sulfur because of their abiUty to cross-link a variety of diene- and non diene-containing elastomers, and their abiUty to produce thermally stable carbon—carbon cross-links. Carbon—carbon bonds are inherently stronger than the carbon—sulfur bonds developed with sulfur vulcanisation (21). [Pg.236]

EPDM is a terpolymer of ethylene, propylene, and a small amount (<10%) of an unsaturated diene third monomer to provide a cure site. Unlike the elastomers previously discussed, the unsaturation in EPDM is not in the main chain, but it is pendent to the chain. Peroxide cure gives superior aging resistance and low compression set. [Pg.241]

Double-Bond Cure Sites. The effectiveness of this kind of reactive site is obvious. It allows vulcanization with conventional organic accelerators and sulfur-based curing systems, besides vulcanization by peroxides. Fast and controllable vulcanizations are expected so double-bond cure sites represent a chance to avoid post-curing. Furthermore, blending with other diene elastomers, such as nitrile mbber [9003-18-3] is gready faciUtated. [Pg.476]

The conjugated diene butyl chain can be cross-linked with peroxide or radiation exposure. Free radicals also ate used to graft cute with vinyl monomers, eg, methacryhc acid or styrene, which lead to transparent mbbet exhibiting a T of about —59 C. [Pg.481]

EPM can be vulcanised radically by means of peroxides. A small amount of built-in third diene monomer in EPDM permits conventional vulcanisa tion with sulfur at the pendent sites of unsaturation. [Pg.502]

The thermal fragmentation of unsaturated bicyclic 1,4-peroxides, often readily made from 1,4-dienes (Scheme 84), has become an important route to novel bis(oxiranes) (80T833, 81CRV91). [Pg.118]

The first type includes vulcanising agents, such as sulphur, selenium and sulphur monochloride, for diene rubbers formaldehyde for phenolics diisocyanates for reaction with hydrogen atoms in polyesters and polyethers and polyamines in fluoroelastomers and epoxide resins. Perhaps the most well-known cross-linking initiators are peroxides, which initiate a double-bond... [Pg.153]

Thus, reaction of 3 -acetoxypregna-5,16-dien-20-one (48) with alkaline hydrogen peroxide produces the 16a,17a-epoxide in 95 % yield, and only a 2% yield of the 16, 17 -epoxide. ... [Pg.11]

As in the case of the steroids, introduction of additional nuclear substituents yields morphine analogs of increased potency. The more important of these are derived from one of the minor alkaloids that occur in opium. Thebaine (14), present in crude opium in about one-tenth the amount of morphine, exhibits a reactive internal diene system that is well known to undergo various addition reactions in a 1,4 manner (e.g., bromination). Thus, reaction with hydrogen peroxide in acid may be visualized to afford first the 14-hydroxy-6-hemiketal (15). Hydrolysis yields the isolated unsaturated ketone (16). Catalytic reduction... [Pg.289]

Dibenzo[a d] cyclohepta-1,4-diene-5-one 3-Dimethylaminopropanol Magnesium Chloride Hydrogen Peroxide... [Pg.74]

Bengal, Methylene Blue, haematoporphyrin and tetraphenylporphyrin and, generally, in organic solvents. Some examples are illustrated in Scheme 4.15. Peroxide products obtained from fatty acid precursors [61] or from cyclopenta-dienes [62] are of interest as pharmaceuticals or for biomedical studies others are versatile starting materials for further transformation. [Pg.169]

The primary interaction of singlet oxygen, produced by energy transfer from the excited sensitizer, with the diene can give rise to an exciplet that then collapses to peroxide, to a 1,4-biradical or to a 1,4-zwitterion alternatively, the adduct is the result of a concerted action without the involvement of an intermediate. Detailed kinetic Diels-Alder investigations of singlet oxygen and furans indicate that the reactions proceed concertedly but are asynchronous with the involvement of an exciplex as the primary reaction intermediate [63]. [Pg.169]


See other pages where Peroxides dienes is mentioned: [Pg.184]    [Pg.1544]    [Pg.184]    [Pg.1544]    [Pg.183]    [Pg.100]    [Pg.134]    [Pg.110]    [Pg.42]    [Pg.236]    [Pg.443]    [Pg.184]    [Pg.179]    [Pg.299]    [Pg.433]    [Pg.11]    [Pg.21]    [Pg.196]    [Pg.150]    [Pg.183]    [Pg.74]    [Pg.357]    [Pg.76]    [Pg.602]    [Pg.76]    [Pg.1296]    [Pg.168]    [Pg.994]    [Pg.1054]   
See also in sourсe #XX -- [ Pg.32 , Pg.120 ]




SEARCH



1,5-Dienes, peroxidation

1,5-Dienes, peroxidation

Ethylene-propylene-diene terpolymer peroxide-curing

Ethylene—propylene-diene monomer peroxide vulcanization

F Bicyclo hepta-2,5-diene Bis peroxide

Hydroxylation hydrogen peroxide, diene

Peroxides from dienes

© 2024 chempedia.info