Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permanganate-oxidisable

This with potassium hydroxide in methanol forms de-OiV-dimethylarmepavine, m.p. 86-7°, (B. HCl, m.p. 229-30°) of which the methiodide, m.p. 233-4°, on treatment with alkali decomposes into trimetHylamine and a -p-anisyl-/3-(3 4-dimethoxy- 6 - vinylphenyl) -ethylene, m.p. 79°. The latter is oxidised by permanganate in acetone to anisic and m-hemipinic acids. With ethyl sulphate and alkali, armepavine gives 0-ethylarmepavine, an oil, which permanganate oxidises to p-ethoxybenzoic acid. Armepavine is similarly oxidised to p-hydroxybenzoic acid and l-keto-6 7-dimethoxy-2-methyl-1 2 3 4-tetiahydrowoquinoline and is therefore 6 7-dimethoxy-l-p-hydroxybenzyI-2-methyI-l 2 3 4-tetrahydrowoquinoline, i.e., it is laudanosine (p. 187) with MeO. at C replaced by H and MeO at C changed to HO. ... [Pg.196]

Bicucine, C20H19O7N, H2O. This alkaloid has m.. 222° (dec.) and — 115 4° (N/10, KHO) but in N/HCl it shows mutarotation — 145° to — 100°,due to the formation of an equilibrium mixture of bicucine and bicuculline. Alkaline permanganate oxidises it to 3 4-methylene-dioxyphthalic acid, isolated as the ethylimide. In view of its formation from bicuculline by the action of alkali, Manske has suggested for its formula (II) or (III), the former representing it as the nomarceine (p. 208) analogue of bicuculline, whilst (III) makes it the hydroxy-acid corresponding to the lactone, bicuculline and is preferred. [Pg.209]

Permanganate attacks ketones at both high and low pH. Alkaline permanganate oxidises acetone the rate law being... [Pg.314]

Potassium permanganate oxidises arsenious acid rapidly and quantitatively in the presence of a trace of potassium iodide, which acts catalytically.7 The reaction takes place in the presence of mineral acid and the use of an indicator or of sodium bicarbonate is unnecessary. The titration may be carried out at any temperature up to 95° C. A slight correction is necessary for the oxidation of the iodide other iodides are less effective than the potassium salt. This method is comparable in accuracy with the iodometric method. [Pg.316]

With potassium iodide it is easily converted into o-nitrobenzyl iodide, and an alcoholic solution of potassium cyanide converts it into o-nitrobenzyl cyanide. Potassium permanganate oxidises it to o-nitrobenzoic acid. [Pg.135]

Oxidation states can be used to establish the stoichiometry for an equation. Consider the reaction between the manganate(VII) (permanganate) and ethanedioate (oxalate) ions in acidic solution. Under these conditions the MnO faq) ion acts as an oxidising agent and it is reduced to Mn (aq), i.e. [Pg.96]

Note that many readily oxidisable compounds (e.g., aldehydes) will also decolorise alkaline potassium permanganate in the cold. [Pg.85]

Oxidation, (a) Unsaturation test. Dissolve about o-i g. of cinnamic acid or of a soluble cinnamate in about 5 ml. of 10% NajCOg solution. To the cold solution add 1% aqueous KMn04 drop by drop. Immediate decolorisation denotes unsaturation. (Note. Many easily oxidisable substances, e.g.y formic acid, acetaldehyde, etc.y also rapidly decolorise alkaline permanganate. Cinnamates, however, do not reduce Fehling s solution.)... [Pg.353]

The sulphides (I) can be readily oxidised in glacial acetic acid solution by potassium permanganate to the corresponding sulphones (II) the latter exhibit a wide range of melting points and are therefore particularly valuable for the characterisation of mercaptans ... [Pg.500]

Oxidation of a side chain by alkaline permanganate. Aromatic hydrocarbons containing side chains may be oxidised to the corresponding acids the results are generally satisfactory for compounds with one side chain e.g., toluene or ethylbenzene -> benzoic acid nitrotoluene -> nitrobenzoic acid) or with two side chains e.g., o-xylene -> phthalic acid). [Pg.520]

Oxidation of side chains. Aromatic nitro compounds that contain a side chain (e.g., nitro derivatives of alkyl benzenes) may be oxidised to the corresponding acids either by alkahne potassium permanganate (Section IV,9, 6) or, preferably, with a sodium dichromate - sulphuric acid mixture in which medium the nitro compound is more soluble. [Pg.529]

Aromatic aldehydes react with the dimedone reagent (Section 111,70,2). All aromatic aldehydes (i) reduce ammoniacal silver nitrate solution and (ii) restore the colour of SchifiF s reagent many react with sodium bisulphite solution. They do not, in general, reduce Fehling s solution or Benedict s solution. Unlike aliphatic aldehydes, they usually undergo the Cannizzaro reaction (see Section IV,123) under the influence of sodium hydroxide solution. For full experimental details of the above tests, see under Ali-phalic Aldehydes, Section 111,70. They are easily oxidised by dilute alkaline permanganate solution at the ordinary temperature after removal of the manganese dioxide by sulphur dioxide or by sodium bisulphite, the acid can be obtained by acidification of the solution. [Pg.721]

Saccharin (imide of o-sulphobenzoic acid). Upon oxidising o toluene-sulphonamide with potassium permanganate in alkaline solution, the sodium salt of o-sulphonamidobenzoic acid is formed, which upon acidifying with concentrated hydrochloric acid or warming passes spontaneously into the cyclic imide of o-sulphobenzoic acid or saccharin ... [Pg.821]

Aromatic sulphinic acids are oxidised by potassium permanganate.to sulphonio acids and are reduced by zinc and hydrochloric acid to thiophenols. [Pg.1078]

Ketones are more stable to oxidation than aldehydes and can be purified from oxidisable impurities by refluxing with potassium permanganate until the colour persists, followed by shaking with sodium carbonate (to remove acidic impurities) and distilling. Traces of water can be removed with type 4A Linde molecular sieves. Ketones which are solids can be purified by crystallisation from alcohol, toluene, or petroleum ether, and are usually sufficiently volatile for sublimation in vacuum. Ketones can be further purified via their bisulfite, semicarbazone or oxime derivatives (vide supra). The bisulfite addition compounds are formed only by aldehydes and methyl ketones but they are readily hydrolysed in dilute acid or alkali. [Pg.67]


See other pages where Permanganate-oxidisable is mentioned: [Pg.522]    [Pg.170]    [Pg.245]    [Pg.171]    [Pg.230]    [Pg.236]    [Pg.130]    [Pg.158]    [Pg.158]    [Pg.529]    [Pg.293]    [Pg.522]    [Pg.170]    [Pg.245]    [Pg.171]    [Pg.230]    [Pg.236]    [Pg.130]    [Pg.158]    [Pg.158]    [Pg.529]    [Pg.293]    [Pg.385]    [Pg.239]    [Pg.395]    [Pg.450]    [Pg.553]    [Pg.848]    [Pg.848]    [Pg.888]    [Pg.1078]    [Pg.70]    [Pg.308]    [Pg.515]    [Pg.512]    [Pg.515]    [Pg.522]    [Pg.522]    [Pg.266]    [Pg.108]    [Pg.431]    [Pg.157]    [Pg.54]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



OXIDISATION

Oxidising

Permanganate oxidisability

Permanganate oxidisability

© 2024 chempedia.info