Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pericyclic reactions method

The most important pericyclic reaction in synthesis, indeed one of the most important of all synthetic methods, is the Diels-Alder reaction. We have seen this many times before. What are the clues for a Diels-Alder disconnection ... [Pg.69]

This chapter has taken the reader through a number of microwave-assisted methodologies to prepare and further functionalize 2-pyridone containing heterocycles. A survey of inter-, intramolecular-, and pericyclic reactions together with electrophilic, nucleophilic and transition metal mediated methodologies has been exemplified. Still, a number of methods remain to be advanced into microwave-assisted organic synthesis and we hope that the smorgasbord of reactions presented in this chapter will inspire to more successful research in this area. [Pg.27]

The rule may then be stated A thermal pericyclic reaction involving a Hiickel system is allowed only if the total number of electrons is 4n + 2. A thermal pericyclic reaction involving a Mobius system is allowed only if the total number of electrons is 4n. For photochemical reactions these rules are reversed. Since both the 2 + 4 and 2 + 2 cycloadditions are Hiickel systems, the Mdbius-Hiickel method predicts that the 2 + 4 reaction, with 6 electrons, is thermally allowed, but the 2 + 2 reaction is not. One the other hand, the 2 + 2 reaction is allowed photochemically, while the 2 + 4 reaction is forbidden. [Pg.1071]

As expected, the Mobius-Hiickel method leads to the same predictions. Here we look at the basis set of orbitals shown in G and H for [1,3] and [1,5] rearrangements, respectively, A [1,3] shift involves four electrons, so an allowed thermal pericyclic reaction must be a Mobius system (p. 1070) with one or an odd number of sign inversions. As can be seen in G, only an antarafacial migration can achieve this. A [1,5] shift, with six electrons, is allowed thermally only when it is a Hiickel system with zero or an even number of sign inversions hence it requires a suprafacial migration. [Pg.1439]

A closely related method is the thermolysis of l-allylsulfinyl-2-cyanoethane in alkynes, which leads to the formation of thiolane oxide derivatives via consecutive pericyclic reactions . The low yield and formation of mixtures are somewhat compensated for by the convenience, but its practicality is as yet rather limited (equation 115). [Pg.462]

Chorismate mutase catalyzes the Claisen rearrangement of chorismate to prephenate at a rate 106 times greater than that in solution (Fig. 5.5). This enzyme reaction has attracted the attention of computational (bio)chemists, because it is a rare example of an enzyme-catalyzed pericyclic reaction. Several research groups have studied the mechanism of this enzyme by use of QM/MM methods [76-78], It has also been studied with the effective fragment potential (EFP) method [79, 80]. In this method the chemically active part of an enzyme is treated by use of the ab initio QM method and the rest of the system (protein environment) by effective fragment potentials. These potentials account... [Pg.171]

Pericyclic reactions belong to the most powerful methods for C,C-bond forming reactions, especially for the stereo- and re-gioselective construction of polycylic ring... [Pg.77]

In the present chapter, however, because the problem is considered from a retrosynthetic point of view, we will distinguish only between heterolytic and homolytic disconnections -to which we will refer to as "retro-annulations"- and concerted or "pericyclic (or cheletropic) cycloreversions". In the same way that Woodward-Hoffmann rules [2] apply to pericyclic reactions, the Baldwin rules [3] may be said to apply to heterolytic as well as to homolytic "monotopic" annulations (see Table 6.1). Although in the preceding Chapter (see 5.5) we have already described some radical "monotopic" annulations, later on in this Chapter (see 6.1.3) and mainly in Chapter 7 we will refer to some new methods, syntheses and strategies which have been developed recently. [Pg.156]

Usually, the formation of a new chiral centre involves the conversion of a prochiral sp carbon atom into one with sp hybridisation, the methods most generally used being the aldol and related condensations, pericyclic reactions (especially the Diels-Alder reaction), epoxidation, cyclopropanation and additions to double bonds (hydrogenation and hydroboration). Another possibility is the conversion of a prochiral sp carbon atom into a chiral centre, as for instance in the a-substitution (alkylation, halogenation, etc.) of a ketone. [Pg.214]

Generally, at least in theory, an important aspect of cation-radical polymerization, from a commercial viewpoint, is that either catalysts or monomer cation-radicals can be generated electrochem-ically. Such an approach deserves a special treatment. The scope of cation-radical polymerization appears to be very substantial. A variety of cation-radical pericyclic reaction types can potentially be applied, including cyclobutanation, Diels-Alder addition, and cyclopropanation. The monomers that are most effectively employed in the cation-radical context are diverse and distinct from those that are used in standard polymerization methods (i.e., vinyl monomers). Consequently, the obtained polymers are structurally distinct from those available by conventional methods although the molecular masses observed so far are still modest. Further development in this area would be promising. [Pg.361]

The structural requirements of the mesomeric betaines described in Section III endow these molecules with reactive -electron systems whose orbital symmetries are suitable for participation in a variety of pericyclic reactions. In particular, many betaines undergo 1,3-dipolar cycloaddition reactions giving stable adducts. Since these reactions are moderately exothermic, the transition state can be expected to occur early in the reaction and the magnitude of the frontier orbital interactions, as 1,3-dipole and 1,3-dipolarophile approach, can be expected to influence the energy of the transition state—and therefore the reaction rate and the structure of the product. This is the essence of frontier molecular orbital (EMO) theory, several accounts of which have been published. 16.317 application of the FMO method to the pericyclic reactions of mesomeric betaines has met with considerable success. The following section describes how the reactivity, electroselectivity, and regioselectivity of these molecules have been rationalized. [Pg.89]

THE RESONANCE AND MOLECULAR-ORBITAL METHODS AND THEIR APPLICATIONS. PERICYCLIC REACTIONS... [Pg.959]

The Resonance and Molecuiar-Orbita Methods and Their Applications. Pericyclic Reactions... [Pg.960]


See other pages where Pericyclic reactions method is mentioned: [Pg.341]    [Pg.306]    [Pg.309]    [Pg.381]    [Pg.255]    [Pg.219]    [Pg.318]    [Pg.447]    [Pg.13]    [Pg.79]    [Pg.88]    [Pg.161]    [Pg.158]    [Pg.743]    [Pg.383]    [Pg.161]   
See also in sourсe #XX -- [ Pg.13 , Pg.15 ]




SEARCH



Pericyclic

Pericyclic reactions

Reaction methods

© 2024 chempedia.info