Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical cations pericyclic reactions

Various substituted 1,3-cyclohexadienes and their open-chain isomers, the respective 1,3,5-hexatrienes, have been studied by El mass spectrometry with special regard to the stereospecificity of the mutual pericyclic interconversion. A brief discussion including the parent systems, ionized 1,3-cyclohexadiene and 1,3,5-hexatriene has been provided by Dass in his review on pericyclic reactions of radical cations. McLafferty and coworkers have shown that the two parent isomers are (almost) indistinguishable... [Pg.21]

The interconversion of butadiene radical cations and ionized cyclobutene represents a model case for a formal pericyclic process. Much work has been invested to study not only the distinguishability of these isomers and their derivatives by mass spectrometry, but also to check the role of orbital symmetry in the ionic species. Hass has addressed the latter problem in depth in a review on pericyclic reactions in radical cations in both the gas and condensed phases and no further survey on the papers mentioned there will be given here. The topic pertains also to the ring-opening of ionized benzocyclobutene to ionized ortho-quinodimethane (cf Section V) and various otha- phenyl-, methyl- and carboxy-substituted derivatives. In this context, we restrict ourselves hwe mentioning that an upper limit of 7 kcalmol only has been detemined by CE mass spectrometry for the activation barrier of the cycloreversion of the parent cyclobutene radical cations. The energy requirement for the cycloreversion of ionized 1- and 3-substituted cyclobutenes were found, by experiment, to be markedly different. Obviously, dissociation of the (in a sense bis-allylic) strained C—C bond is much more facile when the substituent is at C-3,... [Pg.16]

Bauld, N. L., and Yang, J. "Stereospecificity and Mechanism in Cation Radical Diels-Alder and Cyclobutanation Reactions." Org. Lett, X 773-774 (1999). Gao, D., and Bauld, N. L. Mechanistic Implications of the Stereochemistry of the Cation Radical Diels-Alder Cycloaddition of 4-(cis-2-Deuteriovinyl)anisole to 1,3-Cyclopentadiene." /. Org. Chem., 65,6276-6277 (2000). Saettel, N. J., Oxsgaard, J., and Wiesl, O. "Pericyclic Reactions of Radical Cations." Eur. /. Cftem., 1429-1439 (2001). [Pg.925]

Hydrophobic Effects in Pericyclic Reactions 923 Pericyclic Reactions of Radical Cations 925... [Pg.1127]

Generally, at least in theory, an important aspect of cation-radical polymerization, from a commercial viewpoint, is that either catalysts or monomer cation-radicals can be generated electrochem-ically. Such an approach deserves a special treatment. The scope of cation-radical polymerization appears to be very substantial. A variety of cation-radical pericyclic reaction types can potentially be applied, including cyclobutanation, Diels-Alder addition, and cyclopropanation. The monomers that are most effectively employed in the cation-radical context are diverse and distinct from those that are used in standard polymerization methods (i.e., vinyl monomers). Consequently, the obtained polymers are structurally distinct from those available by conventional methods although the molecular masses observed so far are still modest. Further development in this area would be promising. [Pg.361]

Most of the reactions presented in previous chapters involved nucleophiles and electrophiles and occurred in several steps involving cationic, anionic, or, in the last chapter, radical intermediates. In this chapter a group of concerted (one-step) reactions, called pericyclic reactions, that involve none of these intermediates is discussed. The mechanisms of these reactions are exceedingly simple because they consist of a single step. Yet, as we shall see, pericyclic reactions are amazingly selective, both in terms of when they occur and also in their stereochemical requirements. [Pg.956]

Computational studies of radical cation pericyclic reactions are also much more difficult than their neutral counterparts. Besides the problems of computational accuracy and unusual electronic effects discussed in an earlier chapter, the reaction pathways for a bimolecular reaction such as the Diels-Alder reaction will be much more complex than in their neutral counterparts. Since the quality of a computational study of a reaction mechanism relies on comparing the relative energies of the relevant pathways computed as unbiased as possible, special care needs to be... [Pg.99]

Whereas a [2 + 2] pericyclic reaction is essentially forbidden in the ground state, a [2+1] open-shell reaction is feasible. In this respect, the radical cations detected in this context represent distinct stages of pericyclic, radical-cation catalyzed cycloaddi-tions/cycloreversions. In Fig. 7.11, three distinct stages, a tight (cyclobutane-like), an extended (bis ethene), and a trapezoid, of a hole- (or radical-cation) catalyzed cycloaddition/cycloreversion are presented in a schematic way. °... [Pg.151]

Electron transfer to or from a conjugated tr-system can also induce pericyclic reactions leading to skeletal rearrangements. A typical example is the Diels-Alder cycloaddition occurring after radical-cation formation from either the diene or the dienophile [295-297], The radical cation formation is in most cases achieved via photochemically induced electron transfer to an acceptor. The main structural aspect is that the cycloaddition product (s Scheme 9) contains a smaller n-system which is less efficient in charge stabilization than the starting material. Also, the original radical cations can enter uncontrollable polymerization reactions next to the desired cycloaddition, which feature limits the preparative scope of radical-type cycloaddition. [Pg.57]

The ubiquitous and reversible formation of radical cations in photoelectrochemical transformations allows pericyclic reactions to take place upon photocatalytic activation since the barriers for pericyclic reactions are often lower in the singly oxidized product than in the neutral precursor. For example, ring openings on irradiated CdS suspensions are known in strained saturated hydrocarbons [176], and formal [2 -I- 2] cycloadditions have been described for phenyl vinyl ether [ 177] and A-vinyl carbazole [178]. The cyclization of nonconjugated dienes, such as norbomadiene, have also been reported [179]. A recent example involves a 1,3-sigmatropic shift [180]. [Pg.381]

The reaction of n radical cations with n nucleophiles usually leads to C-C bond formation, a reaction that can be very fast (cf. pericyclic reactions also), as in the oxidative dimerization of triphenylamine k = 1-10 x 10 M s ) [293], Hence, such a reaction mechanism can even operate in anodic oxidations (4-methoxybiphenyl [294], tetrahydrocarbazole [295], 4,4 -dimethoxystilbene [296] and 9-methoxyanthracene) [297], where the radical cation concentration is very high. [Pg.700]

In view of the demonstrated stereospecificity of at least some cation radical Diels-Alder reactions, it is at least possible that these reactions, like the neutral Diels-Alder, are true pericyclic reactions, i.e., they may occur via a concerted cycloaddition. The results of a variety of calculations, however, make clear that the cydoadditions must at least be highly non-synchronous, so that the extent of the formation of the second bond, which completes the cyclic transition state, is no more than slight [55, 56]. If the cation radical Diels-Alder reaction is nevertheless interpreted as pericyclic and the concept of orbital correlation diagrams is applied to them, it emerges that the cycloaddition is symmetry allowed if the ionized (cation radical) component is the dienophile, but forbidden if it is the diene [39, 55], The former mode of reaction has been referred to as the [4-1-1] mode, and the latter as the [3 -t- 2] mode. Interestingly, the great majority of cation radical Diels-Alder reactions thus far observed seem to represent the formally allowed [4-1-1] mode. An interesting case in point is the reaction of l,l -dicyclohexenyl with 2,3-dimethylbutadiene (Scheme 24) [57]. [Pg.819]

Although the pericyclic chemistry of anion radicals has been much slower to emerge than that of cation radicals, the number of intriguing examples now available suggests that this could be an attractive area for future development in electron transfer chemistry. Reaction types which have been exemplified include cyclobutanation, retrocyclobutanation, Diels-Alder addition, electrocyclic reactions, and retroelec-trocyclic reactions. [Pg.864]

Polyelectrolytes and soluble polymers containing triarylamine monomers have been applied successfully for the indirect electrochemical oxidation of benzylic alcohols to the benzaldehydes. With the triarylamine polyelectrolyte systems, no additional supporting electrolyte was necessary [91]. Polymer-coated electrodes containing triarylamine redox centers have also been generated either by coating of the electrode with poly(4-vinyltri-arylamine) films [92], or by electrochemical polymerization of 4-vinyl- or 4-(l-hydroxy-ethyl) triarylamines [93], or pyrrol- or aniline-linked triarylamines [94], Triarylamine radical cations are also suitable to induce pericyclic reactions via olefin radical cations in the form of an electron-transfer chain reaction. These include radical cation cycloadditions [95], dioxetane [96] and endoperoxide formation [97], and cycloreversion reactions [98]. [Pg.558]

This section covers the formation of cyclopropanes via cyclization of reactive allylic intermediates (cations, anions, radicals). Included are those transformations of allylic functional derivatives (e.g. allylic halides, alcohols, aldehydes, ketones, acids, esters, boronates, Grignard reagents) to cyclopropyl derivatives that do not actually proceed via allylic reactive intermediates, but which are not covered by other sections of this volume. Additionally, this section will cover methods for the formation of cyclopropanes by pericyclic reactions. [Pg.894]


See other pages where Radical cations pericyclic reactions is mentioned: [Pg.16]    [Pg.93]    [Pg.69]    [Pg.16]    [Pg.21]    [Pg.925]    [Pg.499]    [Pg.144]    [Pg.6]    [Pg.255]    [Pg.138]    [Pg.4]    [Pg.13]    [Pg.17]    [Pg.32]    [Pg.79]    [Pg.977]    [Pg.88]    [Pg.63]    [Pg.1282]    [Pg.1319]    [Pg.116]    [Pg.241]    [Pg.61]    [Pg.62]    [Pg.704]    [Pg.913]    [Pg.1000]    [Pg.704]    [Pg.4]    [Pg.17]    [Pg.32]   
See also in sourсe #XX -- [ Pg.1319 , Pg.1320 , Pg.1321 , Pg.1322 , Pg.1323 , Pg.1324 , Pg.1325 , Pg.1326 , Pg.1327 , Pg.1328 , Pg.1329 , Pg.1330 ]




SEARCH



Cationic reactions

Pericyclic

Pericyclic reactions

Radical cation reactions

Radicals pericyclic reactions

© 2024 chempedia.info