Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Percus equation

We will describe integral equation approximations for the two-particle correlation fiinctions. There is no single approximation that is equally good for all interatomic potentials in the 3D world, but the solutions for a few important models can be obtained analytically. These include the Percus-Yevick (PY) approximation [27, 28] for hard spheres and the mean spherical (MS) approximation for charged hard spheres, for hard spheres with point dipoles and for atoms interacting with a Yukawa potential. Numerical solutions for other approximations, such as the hypemetted chain (EfNC) approximation for charged systems, are readily obtained by fast Fourier transfonn methods... [Pg.478]

Wertheim M S 1963 Exact solution of the Percus-Yevick equation for hard spheres Phys. Rev. Lett. 10 321... [Pg.552]

Wertheim M S 1964 Analytic solution of the Percus-Yevick equation J. Math. Phys. 5 643... [Pg.552]

Baxter R J 1968 Percus-Yevick equation for hard spheres with surface adhesion J. Chem. Phys. 49 2770... [Pg.554]

There are two approaches connnonly used to derive an analytical connection between g(i-) and u(r) the Percus-Yevick (PY) equation and the hypemetted chain (FfNC) equation. Both are derived from attempts to fomi fimctional Taylor expansions of different correlation fimctions. These auxiliary correlation functions include ... [Pg.562]

The general equation can be further reduced to the case of infinite dilution limit, a binary mixmre, ionic solutions, and so on. These equations are supplemented by closure relations such as the Percus-Yevick (PY) and hypernetted chain (HNC) approximations. [Pg.420]

A set of equations (15)-(17) represents the background of the so-called second-order or pair theory. If these equations are supplemented by an approximate relation between direct and pair correlation functions the problem becomes complete. Its numerical solution provides not only the density profile but also the pair correlation functions for a nonuniform fluid [55-58]. In the majority of previous studies of inhomogeneous simple fluids, the inhomogeneous Percus-Yevick approximation (PY2) has been used. It reads... [Pg.175]

In the limit of zero association, x — 0 the latter equation reduces to the adsorption isotherm of hard spheres, evaluated within the singlet Percus-Yevick approximation, whereas for xx 1 (i-S- the limit of complete association) one obtains the adsorption isotherm of tangent dimers... [Pg.207]

We apply the singlet theory for the density profile by using Eqs. (101) and (103) to describe the behavior of associating fluids close to a crystalline surface [120-122], First, we solve the multidensity OZ equation with the Percus-Yevick closure for the bulk partial correlation functions, and next calculate the total correlation function via Eq. (68) and the direct correlation function from Eq. (69). The bulk total direct correlation function is used next as an input to the singlet Percus-Yevick or singlet hypernetted chain equation, (6) or (7), to obtain the density profiles. The same approach can be used to study adsorption on crystalline surfaces as well as in pores with walls of crystalline symmetry. [Pg.207]

To solve the replica OZ equations, they must be completed by closure relations. Several closures have been tested against computer simulations for various models of fluids adsorbed in disordered porous media. In particular, common Percus-Yevick (PY) and hypernetted chain approximations have been applied [20]. Eq. (21) for the matrix correlations can be solved using any approximation. However, it has been shown by Given and Stell [17-19] that the PY closure for the fluid-fluid correlations simplifies the ROZ equation, the blocking effects of the matrix structure are neglected in this... [Pg.302]

Scattering and Disorder. For structure close to random disorder the SAXS frequently exhibits a broad shoulder that is alternatively called liquid scattering ([206] [86], p. 50) or long-period peak . Let us consider disordered, concentrated systems. A poor theory like the one of Porod [18] is not consistent with respect to disorder, as it divides the volume into equal lots before starting to model the process. He concludes that statistical population (of the lots) does not lead to correlation. Better is the theory of Hosemann [158,211], His distorted structure does not pre-define any lots, and consequently it is able to describe (discrete) liquid scattering. The problems of liquid scattering have been studied since the early days of statistical physics. To-date several approximations and some analytical solutions are known. Most frequently applied [201,212-216] is the Percus-Yevick [217] approximation of the Ornstein-Zernike integral equation. The approximation offers a simple descrip-... [Pg.186]

Bulk phase fluid structure was obtained by solution of the Percus-Yevick equation (W) which is highly accurate for the Lennard-Jones model and is not expected to introduce significant error. This allows the pressure tensors to return bulk phase pressures, computed from the virial route to the equation of state, at the center of a drop of sufficiently large size. Further numerical details are provided in reference 4. [Pg.22]

Percus-Yevick Equation Applied to a Lennard-Jones Fluid ... [Pg.28]

An efficient method of solving the Percus-Yevick and related equations is described. The method is applied to a Lennard-Jones fluid, and the solutions obtained are discussed. It is shown that the Percus-Yevick equation predicts a phase change with critical density close to 0.27 and with a critical temperature which is dependent upon the range at which the Lennard-Jones potential is truncated. At the phase change the compressibility becomes infinite although the virial equation of state (foes not show this behavior. Outside the critical region the PY equation is at least two-valued for all densities in the range (0, 0.6). [Pg.28]

A number of approximate integral equations for the radial distribution function g(r) of fluids have been proposed in recent years. Two particularly useful approximations are the Percus-Yevick (PY)1,2 and the Convolution Hypernetted Chain (CHNC)3-4 equations. In this paper an efficient numerical method of solving these equations is described and the results obtained bv applying the method to the PY equation are discussed. A later paper will describe the behavior of the... [Pg.28]

On this way we arrive at Bom-Green-Ivon, Percus-Yevick and hyperchain equations [5, 9], all having a general form (x,Vx,n,T) = 0. These non-linear integro-differential equations are close with respect to the joint correlation function, and Percus-Yevick equation gives the best approximation amongst known at present. An important point is that the accuracy of... [Pg.41]

J. Lebowitz and J. Percus, Kinetic Equations and Density Expansions Exactly Solvable One Dimensional Systems, Phys. Rev., to appear. [Pg.167]

Note that the binary HMSA [60] scheme gives the solute-solvent radial distribution function only in a limited range of solute-solvent size ratio. It fails to provide a proper description for such a large variation in size. Thus, here the solute-solvent radial distribution function has been calculated by employing the well-known Weeks-Chandler-Anderson (WCA) perturbation scheme [118], which requires the solution of the Percus-Yevick equation for the binary mixtures [119]. [Pg.157]

Here, H and C are symmetric matrices whose elements are the partial total hap(r) and direct cap,(r) pair correlation functions a,ft = A,B) W is the matrix of intramolecular correlation functions wap r) that characterize the conformation of a macromolecule and its sequence distribution and p is the average number density of units in the system. Equation 17 is complemented by the closure relation corresponding to the so-called molecular Percus-... [Pg.58]

Smith and Henderson [31] have derived an analytical expression for the radial distribution function of a hard-sphere fluid by solving the Percus— Yevick equation. The expression for the radial distribution function is given by ... [Pg.246]

Ben-Naim (1972b, c) has examined hydrophobic association using statistical mechanical theories of the liquid state, e.g. the Percus-Yevick equations. He has also examined quantitative aspects of solvophobic interactions between solutes using solubility data for ethane and methane. The changes in thermodynamic parameters can be calculated when two methane molecules approach to a separation of, 1-533 x 10-8 cm, the C—C distance in ethane, and the solvophobic quantities 8SI/i, s 2 and 8SiS2 can be calculated. In water (solvophobic = hydrophobic) 5si/i is more negative than in other solvents and decreases as the temperature rises both 8s iH%... [Pg.254]

Another possible approach solving the equilibrium distribution for an electric double layer is offered by integral equation theories [22]. They are based on approximate relationships between different distribution functions. The two most common theories are Percus-Yevick [23] and Hypernetted Chain approximation (HNQ [24], where the former is a good method for short range interactions and the latter is best for long-range interactions. They were both developed around 1960, but are still used. The correlation between two particles can be divided into two parts, one is the direct influence of particle j on particle i and the other originates from the fact that all other particles correlate with particle j and then influence particle i in precisely... [Pg.478]

Tc. The two power-law exponents are not independent but depend on a single parameter, the so-called critical exponent X, which is specific for a given interaction potential (e.g., hard spheres). Actually, the interaction potential enters the MCT equations only indirectly via the structure factor S(q), which fixes the nonlinear coupling in the generalized oscillator equation. It is important to note that the MCT exponents are not universal in contrast to those of second-order phase transitions. In the case of hard spheres, for example, S(q) can be calculated via the Percus-Yevick approximation [26], and the full time and -dependence of < >(q. f) were obtained. As an example, Fig. 10 shows the susceptibility spectra of the hard-sphere system at a particular q. Note that temperature cannot be defined in the hard-sphere system instead, the packing fraction cp is used as a parameter. Above the critical packing fraction 0), which corresponds to T < Tc in systems where T exists, the a-process is absent (frozen) and only the fast dynamics is present. At cp < tpc the a-peak and the concomitant susceptibility minimum shift to lower frequencies with increasing cp, so that the closer cp is to the critical value fast dynamics can be identified (curve c in Fig. 10). [Pg.159]

The equations described earlier contain two unknown functions, h(r) and c(r). Therefore, they are not closed without another equation that relates the two functions. Several approximations have been proposed for the closure relations HNC, PY, MSA, etc. [12]. The HNC closure can be obtained from the diagramatic expansion of the pair correlation functions in terms of density by discarding a set of diagrams called bridge diagrams, which have multifold integrals. It should be noted that the terms kept in the HNC closure relation still include those up to the infinite orders of the density. Alternatively, the relation has been derived from the linear response of a free energy functional to the density fluctuation created by a molecule fixed in the space within the Percus trick. The HNC closure relation reads... [Pg.193]


See other pages where Percus equation is mentioned: [Pg.103]    [Pg.173]    [Pg.179]    [Pg.215]    [Pg.321]    [Pg.321]    [Pg.275]    [Pg.127]    [Pg.23]    [Pg.59]    [Pg.59]    [Pg.124]    [Pg.124]    [Pg.73]    [Pg.35]    [Pg.477]    [Pg.193]    [Pg.64]   
See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Application of the Percus-Yevick Integral Equation

Application of the Percus-Yevick equation

Integral equations Percus-Yevick

Integral equations Percus-Yevick approximation

Numerical solution of the Percus-Yevick equation

Pair correlation function Percus-Yevick equation

Percus

Percus-Yevick equation approximation

Percus-Yevick equation for hard spheres

Percus-Yevick equation numerical solutions

Percus—Yevick equation

The Percus-Yevick integral equation

© 2024 chempedia.info