Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pentoses biosynthesis

A similar reaction may be involved in plants. The general problem of pentose biosynthesis is thoroughly discussed by Glock (77). [Pg.762]

Normally, glucoso-6-phosphate is used in glycolysis and in the pentose cycle. The mutation in the Pgd gene blocks the oxidation pathway in pentose biosynthesis and, hence, 6-phosphogluconate is accumulated. This situation is lethal for an organism. If there is another termination of the pentose cycle by a mutation in gene... [Pg.62]

Vnother pathway of glucose catabolism, the pentose phosphate pathway, is the primary source of N/ E)PH, the reduced coenzyme essential to most reductive biosynthetic processes. For example, N/VDPH is crucial to the biosynthesis of... [Pg.742]

This enzyme interconverts ribulose-5-P and ribose-5-P via an enediol intermediate (Figure 23.30). The reaction (and mechanism) is quite similar to the phosphoglucoisomerase reaction of glycolysis, which interconverts glucose-6-P and fructose-6-P. The ribose-5-P produced in this reaction is utilized in the biosynthesis of coenzymes (including N/ DH, N/ DPH, F/ D, and Big), nucleotides, and nucleic acids (DNA and RNA). The net reaction for the first four steps of the pentose phosphate pathway is... [Pg.765]

MORE NADPH THAN RmOSE-5-P IS NEEDED BY THE CELL Large amounts of N/VDPH can be supplied for biosynthesis without concomitant production of ribose-5-P, if ribose-5-P produced in the pentose phosphate pathway is recycled to produce glycolytic intermediates. As shown in Figure 23.39, this alternative involves a complex interplay between the transketolase and transaldolase reac-... [Pg.770]

To supply reducing equivalents for biosynthesis (NADPH) and pentoses for DNA and RNA biosynthesis. [Pg.196]

The hexose monophosphate pathway has several names just to confuse you. It s called the hexose monophosphate shunt or pathway (HMP shunt or pathway), or the pentose phosphate pathway, or the phospho-gluconate pathway (Fig. 15-1). The pathway in its full form is complicated and has complicated stoichiometry. Usually it s not necessary to remember all of it. The important points are that it makes NADPH for biosynthesis and riboses (C-5 sugars) for DNA and RNA synthesis. [Pg.197]

Plant metabolism can be separated into primary pathways that are found in all cells and deal with manipulating a uniform group of basic compounds, and secondary pathways that occur in specialized cells and produce a wide variety of unique compounds. The primary pathways deal with the metabolism of carbohydrates, lipids, proteins, and nucleic acids and act through the many-step reactions of glycolysis, the tricarboxylic acid cycle, the pentose phosphate shunt, and lipid, protein, and nucleic acid biosynthesis. In contrast, the secondary metabolites (e.g., terpenes, alkaloids, phenylpropanoids, lignin, flavonoids, coumarins, and related compounds) are produced by the shikimic, malonic, and mevalonic acid pathways, and the methylerythritol phosphate pathway (Fig. 3.1). This chapter concentrates on the synthesis and metabolism of phenolic compounds and on how the activities of these pathways and the compounds produced affect product quality. [Pg.89]

Since only less than 10% of G-6-P is channeled into the pentose phosphate cycle (under physiological conditions this percentage varies depending on the different tissues), the question must be discussed, what is the importance of this shunt. With regard to the resulting compounds Eqs. [(3), (5), (6), (7)] one mole NADPH2 appears twice. Furthermore, pentose phosphates are furnished for biosynthesis of nucleotides, nucleic acids, and fatty acids (D5, D6, DIO, H13, M5). [Pg.260]

The conclusion that the significance of the pentose phosphate shunt may be in keeping NADP in its reduced state and furnishing pentose phosphates for biosynthesis, rather than G-6-P utilization, is closely confirmed by the fact that individuals deficient in or lacking G-6-PDH activity suffer from a number of metabolic disorders due to lack of NADPH2 generation and nucleotide depletion. [Pg.261]

T) Pentose phosphate pathway Gluconeogenesis Glycolysis P-Oxidation (5) Fatty acid biosynthesis Tricarboxylic acid cycle (7) Urea cycle... [Pg.113]

The pentose phosphate pathway (PPP, also known as the hexose monophosphate pathway) is an oxidative metabolic pathway located in the cytoplasm, which, like glycolysis, starts from glucose 6-phosphate. It supplies two important precursors for anabolic pathways NADPH+H+, which is required for the biosynthesis of fatty acids and isopren-oids, for example (see p. 168), and ribose 5-phosphate, a precursor in nucleotide biosynthesis (see p. 188). [Pg.152]

The first step is carboxylation of acetyl CoA to malonyl CoA. This reaction is catalyzed by acetyl-CoA carboxylase [5], which is the key enzyme in fatty acid biosynthesis. Synthesis into fatty acids is carried out by fatty acid synthase [6]. This multifunctional enzyme (see p. 168) starts with one molecule of ace-tyl-CoA and elongates it by adding malonyl groups in seven reaction cycles until palmi-tate is reached. One CO2 molecule is released in each reaction cycle. The fatty acid therefore grows by two carbon units each time. NADPH+H is used as the reducing agent and is derived either from the pentose phosphate pathway (see p. 152) or from isocitrate dehydrogenase and malic enzyme reactions. [Pg.162]

In eukaryotes, the cytoplasm, representing slightly more than 50% of the cell volume, is the most important cellular compartment. It is the central reaction space of the cell. This is where many important pathways of the intermediary metabolism take place—e.g., glycolysis, the pentose phosphate pathway, the majority of gluconeogenesis, and fatty acid synthesis. Protein biosynthesis (translation see p. 250) also takes place in the cytoplasm. By contrast, fatty acid degradation, the tricarboxylic acid cycle, and oxidative phosphorylation are located in the mitochondria (see p. 210). [Pg.202]

The tightly regulated pathway specifying aromatic amino acid biosynthesis within the plastid compartment implies maintenance of an amino acid pool to mediate regulation. Thus, we have concluded that loss to the cytoplasm of aromatic amino acids synthesized in the chloroplast compartment is unlikely (13). Yet a source of aromatic amino acids is needed in the cytosol to support protein synthesis. Furthermore, since the enzyme systems of the general phenylpropanoid pathway and its specialized branches of secondary metabolism are located in the cytosol (17), aromatic amino acids (especially L-phenylalanine) are also required in the cytosol as initial substrates for secondary metabolism. The simplest possibility would be that a second, complete pathway of aromatic amino acid biosynthesis exists in the cytosol. Ample precedent has been established for duplicate, major biochemical pathways (glycolysis and oxidative pentose phosphate cycle) of higher plants that are separated from one another in the plastid and cytosolic compartments (18). Evidence to support the hypothesis for a cytosolic pathway (1,13) and the various approaches underway to prove or disprove the dual-pathway hypothesis are summarized in this paper. [Pg.91]

Alkaloid biosynthesis needs the substrate. Substrates are derivatives of the secondary metabolism building blocks the acetyl coenzyme A (acetyl-CoA), shikimic acid, mevalonic acid and 1-deoxyxylulose 5-phosphate (Figure 21). The synthesis of alkaloids starts from the acetate, shikimate, mevalonate and deoxyxylulose pathways. The acetyl coenzyme A pathway (acetate pathway) is the source of some alkaloids and their precursors (e.g., piperidine alkaloids or anthraniUc acid as aromatized CoA ester (antraniloyl-CoA)). Shikimic acid is a product of the glycolytic and pentose phosphate pathways, a construction facilitated by parts of phosphoenolpyruvate and erythrose 4-phosphate (Figure 21). The shikimic acid pathway is the source of such alkaloids as quinazoline, quinoline and acridine. [Pg.67]

The NADPH level is clearly important for phase 1 reactions, yet many biochemical processes, such as fatty acid biosynthesis, use this coenzyme. It is derived from either the pentose phosphate shunt or isocitrate dehydrogenase. Consequently, the overall metabolic... [Pg.116]

NADPH formed in the oxidative phase is used to reduce glutathione, GSSG (see Box 14-3) and to support reductive biosynthesis. The other product of the oxidative phase is ribose 5-phosphate, which serves as precursor for nucleotides, coenzymes, and nucleic acids. In cells that are not using ribose 5-phosphate for biosynthesis, the nonoxidative phase recycles six molecules of the pentose into five molecules of the hexose glucose 6-phosphate, allowing continued production of NADPH and converting glucose 6-phosphate (in six cycles) to C02. [Pg.550]

NADPH provides reducing power for biosynthetic reactions, and ribose 5-phosphate is a precursor for nucleotide and nucleic acid synthesis. Rapidly growing tissues and tissues carrying out active biosynthesis of fatty acids, cholesterol, or steroid hormones send more glucose 6-phosphate through the pentose phosphate pathway than do tissues with less demand for pentose phosphates and reducing power. [Pg.555]

In hepatocytes and adipocytes, cytosolic NADPH is largely generated by the pentose phosphate pathway (see Fig. 14-21) and by malic enzyme (Fig. 21-9a). The NADP-linked malic enzyme that operates in the carbon-assimilation pathway of C4 plants (see Fig. 20-23) is unrelated in function. The pyruvate produced in the reaction shown in Figure 21-9a reenters the mitochondrion. In hepatocytes and in the mammary gland of lactating animals, the NADPH required for fatty acid biosynthesis is supplied primarily by the pentose phosphate pathway (Fig. 21-9b). [Pg.794]

FIGURE 22-9 Overview of amino acid biosynthesis. The carbon skeleton precursors derive from three sources glycolysis (pink), the citric acid cycle (blue), and the pentose phosphate pathway (purple). [Pg.841]

The oxidative portion of the pentose phosphate pathway consists of three reactions that lead to the formation of ribulose 5-phosphate, C02, and two molecules of NADPH for each molecule of glucose 6-phosphate oxidized (Figure 13.2). This portion of the pathway is particularly important in the liver and lactating mammary glands, which are active in the biosynthesis of fatty acids, in the adrenal cortex, which is active in the NADPH-dependent synthesis of steroids, and in erythrocytes, which require NADPH to keep glutathione reduced. [Pg.143]


See other pages where Pentoses biosynthesis is mentioned: [Pg.40]    [Pg.40]    [Pg.768]    [Pg.123]    [Pg.156]    [Pg.193]    [Pg.215]    [Pg.535]    [Pg.537]    [Pg.537]    [Pg.151]    [Pg.92]    [Pg.183]    [Pg.200]    [Pg.99]    [Pg.59]    [Pg.60]    [Pg.441]    [Pg.161]    [Pg.549]    [Pg.554]    [Pg.895]    [Pg.143]    [Pg.145]    [Pg.145]    [Pg.152]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



© 2024 chempedia.info