Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive Concepts

The examination of the helicopter main rotor has yielded a multitude of excitation mechanisms for noise and vibration. Dealing with such a complicated system, it is unlikely that a single solution exists to produce relief in all aspects. Thus, a variety of partially very different approaches has been discussed and developed. In this section, the major ideas involving non-active elements will be presented for the classical helicopter configuration. Details on these elements are given by Bielawa [21], Brarnwell et al. [23]. [Pg.10]


The cost of passive gas control systems is low. The passive concept has virtually no operating or maintenance costs. However, it is recommended that periodic inspections be made and that the surface gas be periodically monitored in the area being protected to ensure that the systems are performing their intended functions. [Pg.608]

Both active and passive concepts have been developed, but grow rapidly in size, complexity, and cost as the range requirements are increased. [Pg.102]

No clear consensus has been reached on major shifts toward passive safety for future reactors, but at least the selective application of passive concepts for some systems is generally supported for future plants. The incorporation of passive safety features is not a means in itself and needs to be carefully evaluated and introduced when benefits are evident. [Pg.20]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

Cluster research is a very interdisciplinary activity. Teclmiques and concepts from several other fields have been applied to clusters, such as atomic and condensed matter physics, chemistry, materials science, surface science and even nuclear physics. Wlrile the dividing line between clusters and nanoparticles is by no means well defined, typically, nanoparticles refer to species which are passivated and made in bulk fonn. In contrast, clusters refer to unstable species which are made and studied in the gas phase. Research into the latter is discussed in the current chapter. [Pg.2388]

Many factors and conditions affect the tendency of metals to corrode. Once the right conditions and all the components are present, corrosion may proceed in one or more forms. Before considering the aforementioned points, it is necessary to consider the concepts of polarization and passivity. [Pg.1262]

It should be noted that Fig. 1.15 (top) is based entirely on thermodynamic data and is therefore correctly described as an equilibrium diagram, since it shows the phases (nature and activity) that exist at equilibrium. However, the concepts implicit in the terms corrosion, immunity and passivity lie outside the realm of thermodynamics, and, for example, passivity involves both thermodynamic and kinetic concepts it follows that Fig. 1.15 (bottom) cannot be regarded as a true equilibrium diagram, although it is based on one that has been constructed entirely from thermodynamic data. [Pg.67]

The development of acidity within an occluded cell is by no means a new concept, and it was used by Hoar s as early as 1947 in his Acid Theory of Pitting to explain the pitting of passive metals in solutions containing Cl ions. According to Hoar the Cl ions migrate to the anodic sites and the metal ions at these sites hydrolyse with the formation of HCl, a strong acid that inhibits the formation of a protective film of oxide or hydroxide. Edeleanu and Evans followed the pH changes when aluminium was made anodic in Cl solutions and found that the pH decreased from 8-8 to 5-3. [Pg.162]

Although important contributions in the use of electrical measurements in testing have been made by numerous workers it is appropriate here to refer to the work of Stern and his co-workerswho have developed the important concept of linear polarisation, which led to a rapid electrochemical method for determining corrosion rates, both in the laboratory and in plant. Pourbaix and his co-workers on the basis of a purely thermodynamic approach to corrosion constructed potential-pH diagrams for the majority of metal-HjO systems, and by means of a combined thermodynamic and kinetic approach developed a method of predicting the conditions under which a metal will (a) corrode uniformly, (b) pit, (c) passivate or (d) remain immune. Laboratory tests for crevice corrosion and pitting, in which electrochemical measurements are used, are discussed later. [Pg.1004]

With regard to rechargeable cells, a number of laboratory studies have assessed the applicability of the rocking-chair concept to PAN-EC/PC electrolytes with various anode/cathode electrode couples [121-123], Performance studies on cells of the type Li°l PAN-EC/PC-based electrolyte lLiMn20 and carbon I PAN-EC/PC-based electrolyte ILiNi02 show some capacity decline with cycling [121]. For cells with a lithium anode, the capacity decay can be attributed mainly to passivation and loss of lithium by its reaction with... [Pg.516]

The qualitative thermodynamic explanation of the shielding effect produced by the bound neutral water-soluble polymers was summarized by Andrade et al. [2] who studied the interaction of blood with polyethylene oxide (PEO) attached to the surfaces of solids. According to their concept, one possible component of the passivity may be the low interfacial free energy (ysl) of water-soluble polymers and their gels. As estimated by Matsunaga and Ikada [3], it is 3.7 and 3.1 mJ/m2 for cellulose and polyvinylalcohol whereas 52.6 and 41.9 mJ/m2 for polyethylene and Nylon 11, respectively. Ikada et al. [4] also found that adsorption of serum albumin increases dramatically with the increase of interfacial free energy of the polymer contacting the protein solution. [Pg.137]

These facts are different demonstrations of the same event degradation reactions occur simultaneously with electropolymerization.49-59 These reactions had also been called overoxidation in the literature. The concept is well established in polymer science and consists of those reactions between the pristine polymer and the ambient that promote a deterioration of the original polymeric properties. The electrochemical consequence of a strong degradation is a passivation of the film through a decrease in the electrical conductivity that allows a lower current flow at the same potential than the pristine and nondegraded polymer film did. Passivation is also a well-established concept in the electrochemistry of oxide films or electropainting. [Pg.326]

Different views exist as to the reasons for selective dissolution of the asperities. According to older concepts, convection of the liquid is hindered in the solution layers filling recesses hence, reaction products will accumulate there and raise the concentration and viscosity in these layers. Both factors tend to lower a metal s anodic dissolution rate relative to that at raised points. According to other concepts, a surface condition close to passive arises during electropolishing. In this case, the conditions for passivation of the metal at raised points differ from those in recesses. [Pg.315]

The concepts and basic approach used in studies of electrical fluctuations in corrosion processes proved to be very successful as well in mechanistic studies of electrode reactions taking place at materials covered by passivating films. A typical example is the electrochemical dissolution of silicon. From an analysis of the noise characteristics of this process, it has been possible to identify many features as well as the conductivity of the nanostructures of porous silicon being formed on the original silicon surface. [Pg.628]


See other pages where Passive Concepts is mentioned: [Pg.322]    [Pg.422]    [Pg.422]    [Pg.10]    [Pg.11]    [Pg.14]    [Pg.322]    [Pg.422]    [Pg.422]    [Pg.10]    [Pg.11]    [Pg.14]    [Pg.218]    [Pg.14]    [Pg.150]    [Pg.3]    [Pg.274]    [Pg.58]    [Pg.72]    [Pg.95]    [Pg.121]    [Pg.140]    [Pg.868]    [Pg.1161]    [Pg.1171]    [Pg.1304]    [Pg.14]    [Pg.222]    [Pg.82]    [Pg.155]    [Pg.184]    [Pg.308]    [Pg.309]    [Pg.58]    [Pg.5]    [Pg.819]    [Pg.27]    [Pg.117]    [Pg.1247]    [Pg.62]    [Pg.290]    [Pg.22]   


SEARCH



© 2024 chempedia.info