Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin parathyroid hormone

More than 99% of total body calcium is found in bone the remaining less than 1% is in the ECF and ICE Calcium plays a critical role in the transmission of nerve impulses, skeletal muscle contraction, myocardial contractions, maintenance of normal cellular permeability, and the formation of bones and teeth. There is a reciprocal relationship between the serum calcium concentration (normally 8.6 to 10.2 mg/dL [2.15 to 2.55 mmol/L]) and the serum phosphate concentration that is regulated by a complex interaction between parathyroid hormone, vitamin D, and calcitonin. About one-half of the serum calcium is bound to plasma proteins the other half is free ionized calcium. Given that the serum calcium has significant protein binding, the serum calcium concentration must be corrected in patients who have low albumin concentrations (the major serum protein). The most commonly used formula adds 0.8 mg/dL (0.2 mmol/L) of calcium for each gram of albumin deficiency as follows ... [Pg.413]

Marcus, R., Agents affecting calcification and bone turnover calcium, phosphate, parathyroid hormone, vitamin D, calcitonin, and other compounds, in Goodman and Gilman s The Pharmacological Basis of Therapeutics, 9th ed., Hardman, J.G. and Limbird, L.E., Eds., McGraw-Hill, New York, 1996, chap. 61. [Pg.138]

Bone mineral metabolism agents Parathyroid hormone Vitamin D... [Pg.24]

Mackey, S. L-, Heymont,). L-, Kionenberg, H. M., and Dcmay, M. B. (1996), Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid X receptor, Mof. Endocrine . ID, 298-305. [Pg.663]

The chemical form of aluminum affects aluminum absorption. Furthermore, the parathyroid hormones, vitamin D and iron seem to affect aluminum absorption."" In the human bloodstream aluminum is stored mainly in the Uver, kidneys, spleen, bones, and heart and brain tissues. [Pg.433]

Mineral excretion in the kidneys is influenced by local factors like the glomerulus and tubulus functions and the amount of filterable Ca, as well as by other factors such as cortisol, parathyroid hormone, vitamin D, and calcitonin. [Pg.303]

Fig. 2. Homeostatic control of blood Ca " level where PTH is parathyroid hormone [9002-64-6], CC, cholecalciferol, ie, vitamin D HCC, hydroxycholecalciferol DHCC, dihydroxycholecalciferol CaBP, calcium-binding protein NAD PH, protonated nicotinarnide-adenine dinucleotide... Fig. 2. Homeostatic control of blood Ca " level where PTH is parathyroid hormone [9002-64-6], CC, cholecalciferol, ie, vitamin D HCC, hydroxycholecalciferol DHCC, dihydroxycholecalciferol CaBP, calcium-binding protein NAD PH, protonated nicotinarnide-adenine dinucleotide...
Factors controlling calcium homeostasis are calcitonin, parathyroid hormone(PTH), and a vitamin D metabolite. Calcitonin, a polypeptide of 32 amino acid residues, mol wt - SGOO, is synthesized by the thyroid gland. Release is stimulated by small increases in blood Ca " concentration. The sites of action of calcitonin are the bones and kidneys. Calcitonin increases bone calcification, thereby inhibiting resorption. In the kidney, it inhibits Ca " reabsorption and increases Ca " excretion in urine. Calcitonin operates via a cyclic adenosine monophosphate (cAMP) mechanism. [Pg.376]

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

Although it is being found that vitamin D metaboUtes play a role ia many different biological functions, metaboHsm primarily occurs to maintain the calcium homeostasis of the body. When calcium semm levels fall below the normal range, 1 a,25-dihydroxy-vitainin is made when calcium levels are at or above this level, 24,25-dihydroxycholecalciferol is made, and 1 a-hydroxylase activity is discontiaued. The calcium homeostasis mechanism iavolves a hypocalcemic stimulus, which iaduces the secretion of parathyroid hormone. This causes phosphate diuresis ia the kidney, which stimulates the 1 a-hydroxylase activity and causes the hydroxylation of 25-hydroxy-vitamin D to 1 a,25-dihydroxycholecalciferol. Parathyroid hormone and 1,25-dihydroxycholecalciferol act at the bone site cooperatively to stimulate calcium mobilization from the bone (see Hormones). Calcium blood levels are also iafluenced by the effects of the metaboUte on intestinal absorption and renal resorption. [Pg.137]

Systemic regulators of osteoblast, osteocyte and osteoclast functions, and therefore of bone metabolism. The major bone-seeking hormones are parathyroid hormone (PIH), 1,25-dihydroxy vitamin D3 (calcitriol) and the various ex hormones. [Pg.918]

R. S. Flueck, J. A. "The Interrelationships Between Vitamin D and Parathyroid Hormone in Disorders of Mineral Metabolism in Man" (Proceedings of 2nd Vitamin D Symposium), Weisbaden, West Germany, Oct., 1974, In Press. [Pg.56]

Check parathyroid hormone (PTH), vitamin D and precursors, magnesium, and phosphate levels ° Pharmacological causes of decreased ionized calcium may include excess infusions of citrate, EDTA, lactate, fluoride poisoning, foscarnet, cinacalcet, bisphosphates, or unrelated increase in serum phosphate or decrease in serum magnesium levels... [Pg.161]

Renal osteodystrophy stems from disruptions in calcium, phosphorus, and vitamin D homeostasis through the interaction with the parathyroid hormone. [Pg.373]

Increased parathyroid hormone (PTH) level decreased vitamin D levels (stages 4 or 5 CKD). [Pg.378]

Osteoporosis Encourage patients to ingest adequate amounts of calcium and vitamin D, encourage smokers to discontinue tobacco use, and consider initiation of medications for osteoporosis (e.g., bisphosphonates, calcitonin, and parathyroid hormone) if the patient is taking glucocorticoids for an extended period of time or if the patient has evidence of low bone mineral density.15,41... [Pg.877]

Around 99% of calcium is contained in the bones, whereas the other 1% resides in the extracellular fluid. Of this extracellular calcium, approximately 40% is bound to albumin, and the remainder is in the ionized, physiologically active form. Normal calcium levels are maintained by three primary factors parathyroid hormone, 1,25-dihydroxyvitamin D, and calcitonin. Parathyroid hormone increases renal tubular calcium resorption and promotes bone resorption. The active form of vitamin D, 1,25-dihydroxyvitamin D, regulates absorption of calcium from the GI tract. Calcitonin serves as an inhibitory factor by suppressing osteoclast activity and stimulating calcium deposition into the bones. [Pg.1482]

Secondary hyperparathyroidism Increased secretion of parathyroid hormone from the parathyroid glands caused by hyperphosphatemia, hypocalcemia, and vitamin D deficiency that result from decreased kidney function. It can lead to bone disease (renal osteodystrophy). [Pg.1576]

The answer is c. (Hardman, p 15230 Administration of intravenous CaG would immediately correct the tetany that might occur in a patient in whom a thyroidectomy was recently performed. Parathyroid hormone would act more slowly but could be given for its future stabilizing effect. Long-term control of a patient after a thyroidectomy can be obtained with vitamin D and dietary therapy Calcitonin is a hypocalcemic antagonist of parathyroid hormone. Plicamycin (mithramycin) is used to treat Paget s disease and hypercalcemia. The dose employed is about one-tenth the amount used for plicamycin s cytotoxic action. [Pg.254]

The a ns wer is a. (Hardman, pp 1525-1528.) Pa r a thyroid ho r m o ne is synthesized by and released from the parathyroid gland increased synthesis of PTI1 is a response to low serum Ca concentrations. Resorption and mobilization of Ca and phosphate from bone are increased in response to elevated PTI1 concentrations. Replacement of body stores of Ca is enhanced by the capacity of PTH to promote increased absorption of Ca by the small intestine in concert with vitamin D, which is the primary factor that enhances intestinal Ca absorption. Parathyroid hormone also causes an increased renal tubular reabsorption of Ca and excretion of phosphate. As a consequence of these effects, the extracellular Ca concentration becomes elevated. [Pg.257]

Calcium-phosphorus balance is mediated through a complex interplay of hormones and their effects on bone, GI tract, kidney, and parathyroid gland. As kidney disease progresses, renal activation of vitamin D is impaired, which reduces gut absorption of calcium. Low blood calcium concentration stimulates secretion of parathyroid hormone (PTH). As renal function declines, serum calcium balance can be maintained only at the expense of increased bone resorption, ultimately resulting in renal osteodystrophy (ROD) (Fig. 76-7). [Pg.881]

Hypocalcemia results from altered effects of parathyroid hormone and vitamin D on the bone, gut, and kidney. The primary causes are postoperative hypoparathyroidism and vitamin D deficiency. [Pg.901]

Hypocalcemia (below-normal blood calcium) stimulates release of parathyroid hormone (PTH), which in turn binds to receptors on cells of the renal proximal tubules. The receptors are coupled through cAMP to activation of a la-hydroxylase important for the final, rate-hmiting step in the conversion of vitamin D to 1,25-DHCC (dihydroxycholecalciferol or caldtriol). [Pg.145]

Vitamin D is really a small family of closely related molecnles that prevent the bone disease rickets in children and osteomalacia in adnlts. In both cases, inadeqnate mineralization of bone results in bone deformation and weakness. Calcinm, Ca +, homeostasis is one goal of vitamin D activity, a goal it shares with parathyroid hormone and calcitonin. Calcium is intimately involved in bone mineralization and distnrbances of calcium levels in the blood can resnlt in inadeqnate bone mineralization or excessive calcification of other tissues. [Pg.198]

There are four parathyroid glands, which are situated behind the thyroid. They produce parathyroid hormone (PTH), a peptide which interacts with vitamin D to control the level of calcium in the blood. PTH stimulates release of calcium from bone and increases the uptake of calcium by the kidney tubules from the glomerular hltrate. [Pg.255]

Enzyme induction properties Rifampin has enzyme induction properties that can enhance the metabolism of endogenous substrates including adrenal hormones, thyroid hormones, and vitamin D. Rifampin and isoniazid have been reported to alter vitamin D metabolism. In some cases, reduced levels of circulating 25-hydroxy vitamin D and 1,25-dihydroxy vitamin D have been accompanied by reduced serum calcium and phosphate, and elevated parathyroid hormone. [Pg.1717]

Abrams, S. A., Griffin, 1. J., Hawthorne, K. M., Gunn, S. K., Gundberg, C. M., and Carpenter, T. O. (2005b). Relationships among Vitamin D Levels, parathyroid hormone, and calcium absorption in young adolescents. J. Clin. Endocrinol. Metab. 90,5576-5581. [Pg.328]

Calcitonin is a polypeptide hormone which (along with parathyroid hormone and the vitamin D derivative, 1,25-dihydroxycholecalciferol) plays a central role in regulating serum ionized calcium (Ca +) and inorganic phosphate (P,) levels. The adult human body contains up to 2 kg of calcium, of which 98% is present in the skeleton (i.e. bone). Up to 85% of the 1kg of phosphorus present in the body is also found in the skeleton (the so-called mineral fraction of bone is largely composed of Ca3 (P04)2 which acts as a body reservoir for both calcium and phosphorus). Calcium concentrations in human serum approximate to O.lmg/ml and are regulated very tightly (serum phosphate levels are more variable). [Pg.347]

Osteomalacia is the condition in which bone becomes demineralised due to deficiency of vitamin D. In this condition parathyroid hormone (PTH) acts on the bone to maintain serum calcium, resulting in demineralisation. Serum calcium is usually normal or slightly low alkaline phosphatase levels are high, reflecting excessive osteoblast activity, and serum phosphate falls as an effect of PTH on the kidney. The same condition in children results in defects in long bone formation, and is termed rickets. [Pg.775]

Parathyroid Hormone, Caicitonin, Vitamin D, and Other Compounds Reiated to Minerai Metaboiism 754... [Pg.675]


See other pages where Vitamin parathyroid hormone is mentioned: [Pg.327]    [Pg.327]    [Pg.606]    [Pg.277]    [Pg.302]    [Pg.342]    [Pg.414]    [Pg.75]    [Pg.331]    [Pg.171]    [Pg.299]    [Pg.100]    [Pg.222]    [Pg.398]   
See also in sourсe #XX -- [ Pg.88 , Pg.91 , Pg.100 ]

See also in sourсe #XX -- [ Pg.88 , Pg.91 , Pg.100 ]

See also in sourсe #XX -- [ Pg.88 , Pg.91 , Pg.100 ]




SEARCH



Hormones vitamin

Parathyroid

Parathyroid hormone

Parathyroid hormone and vitamin

Vitamin D (cont parathyroid hormone

© 2024 chempedia.info