Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Para catalytic

The y -phenylenediamiaes are easily obtained by dinitrating, followed by catalyticaHy hydrogenating, an aromatic hydrocarbon. Thus, the toluenediamiaes are manufactured by nitrating toluene with a mixture of sulfuric acid, nitric acid, and 23% water at 330°C which first produces a mixture (60 40) of the ortho and para mononitrotoluenes. Further nitration produces the 80 20 mixture of 2,4- and 2,6-dinitrotoluene. Catalytic hydrogenation produces the commercial mixture of diamiaes which, when converted to diisocyanates, are widely used ia the production of polyurethanes (see Amines, aromatic, DIAMINOTOLUENES) (22). [Pg.255]

The hydroxyl group of the resulting phenol is situated immediately adjacent to where the carboxyl group was previously located. This same Hquid-phase copper oxidation process chemistry has been suggested for the production of cresols by the oxidation of toluic acids. y -Cresol would be formed by the oxidation of either ortho or para toluic acids a mixture of 0- and -cresols would be produced from y -toluic acid (6). A process involving the vapor-phase catalytic oxidation of benzoic acid to phenol has been proposed, but no plants have ever been built utilizing this technology (27). [Pg.55]

Chlorination with SO2CI2, which is favorable to the para isomer at the monochlotination stage, gives an excellent yield of 2,4-dichlorophenol. Startiag with (9-chlorophenol, it is possible to attain a selectivity for 2,4-dichlorophenol of 98%, if chlotination is carried out ia Hquid SO2 at low temperature (20). 2,6-Dichlorophenol is also used as an iatermediate. It is obtained by chlotinatiag o-chlorophenol ia the presence of a catalytic quantity of an amine, with or without a solvent medium (21,22), giving a yield of 90%. [Pg.79]

In the alternate approach, the amide formation is performed on para-nitrobenzenesulfonyl chloride (91). Reduction by either chemical or catalytic methods affords directly the desired product (90). ... [Pg.123]

A key step in the synthesis of 13-membered meta ansa and 14-membered para ansa peptide alkaloids involves catalytic hydrogenolysis of carbobenzyl-oxypeptide pentafluorophenyl esters. The most suitable solvent is dioxane with addition of a catalytic amount of pyrrolidinopyridine and 2% ethanol. Temperature should not exceed 90°C. The authors believe that after deblocking, the amino function remains on the surface until ring formation with the activated carboxylic function is accomplished (/5/). [Pg.161]

In these equations, Dmax is the larger of the summed values of STERIMOL parameters, Bj, for the opposite pair 68). It expresses the maximum total width of substituents. The coefficients of the ct° terms in Eqs. 37 to 39 were virtually equal to that in Eq. 40. This means that the a° terms essentially represent the hydrolytic reactivity of an ester itself and are virtually independent of cyclodextrin catalysis. The catalytic effect of cyclodextrin is only involved in the Dmax term. Interestingly, the coefficient of Draax was negative in Eq. 37 and positive in Eq. 38. This fact indicates that bulky substituents at the meta position are favorable, while those at the para position unfavorable, for the rate acceleration in the (S-cyclodextrin catalysis. Similar results have been obtained for a-cyclodextrin catalysis, but not for (S-cyclodextrin catalysis, by Silipo and Hansch described above. Equation 39 suggests the existence of an optimum diameter for the proper fit of m-substituents in the cavity of a-cyclodextrin. The optimum Dmax value was estimated from Eq. 39 as 4.4 A, which is approximately equivalent to the diameter of the a-cyclodextrin cavity. The situation is shown in Fig. 8. A similar parabolic relationship would be obtained for (5-cyclodextrin catalysis, too, if the correlation analysis involved phenyl acetates with such bulky substituents that they cannot be included within the (5-cyclodextrin cavity. [Pg.85]

Ketal 73 can be formed in a yield of about 60 % by refluxing a solution of tetronic acid (36), ethylene glycol, and a catalytic amount of para-toluenesulfonic acid in benzene for approximately 12 hours. With only one electrophilic site, 73 reacts smoothly with Dibal-H to give lactol 35 in 84% yield. Compound 35, a participant in a ring-chain tautomeric equilibrium process,18 should be regarded as a latent aldehyde. This substance can, in fact, serve as... [Pg.548]

On the basis of information on the properties of the nickel-hydrogen and nickel-copper-hydrogen systems available in 1966 studies on the catalytic activity of nickel hydride as compared with nickel itself were undertaken. As test reactions the heterogeneous recombination of atomic hydrogen, the para-ortho conversion of hydrogen, and the hydrogenation of ethylene were chosen. [Pg.274]

The range of observations concerning the direct comparison of the catalytic activity of nickel and rich in nickel alloys with their respective hydride phases has been further extended on reactions of a more complicated nature such as para-ortho hydrogen conversion and ethylene hydrogenation. [Pg.281]

The para-hydrogen conversion catalytic activity of the metals belonging to the first transition series Ti, V, Cr, Mn, Fe, Co, Ni was compared by Eley and Shooter (70). The purpose of the research was not to discover... [Pg.283]

So the question should never be (nor has it ever been) one of choosing between all catalytic chemists studying ortho-para hydrogen conversion, molecular orbitals and the like, or all catalytic chemists studying fuel synthesis and exhaust catalysts a healthy society is a judiciously balanced society, and the concern for relevance is one for a shift toward greater dedication in the direction of the most vital needs for the survival and health of the kinetic system of human society. [Pg.441]

His researches and those of his pupils led to his formulation in the twenties of the concept of active catalytic centers and the heterogeneity of catalytic and adsorptive surfaces. His catalytic studies were supplemented by researches carried out simultaneously on kinetics of homogeneous gas reactions and photochemistry. The thirties saw Hugh Taylor utilizing more and more of the techniques developed by physicists. Thermal conductivity for ortho-para hydrogen analysis resulted in his use of these species for surface characterization. The discovery of deuterium prompted him to set up production of this isotope by electrolysis on a large scale of several cubic centimeters. This gave him and others a supply of this valuable tracer for catalytic studies. For analysis he invoked not only thermal conductivity, but infrared spectroscopy and mass spectrometry. To ex-... [Pg.444]

From the results of Malek et al.49,561 m 205,206,211) it may be concluded that the various metal derivatives used in esterifications exhibit many common catalytic characteristics. Thus, these authors190 established relationships concerning the free energies of esterification of thirteen ortho-, meta- and para-substituted benzoic adds by 1,2-ethanediol. They obtained Hammett parameters which do not differ greatly from those found for the add-catalyzed esterifications of the same adds with various alcohols. They concluded... [Pg.89]

At about die same time, die application of the Suzuki coupling, the crosscoupling of boronic acids widi aryl-alkenyl halides in die presence of a base and a catalytic amount of palladium catalyst (Scheme 9.12),16 for step-growth polymerization also appeared. Schliiter et al. reported die synthesis of soluble poly(para-phenylene)s by using the Suzuki coupling condition in 1989 (Scheme 9.13).17 Because aryl-alkenyl boronic acids are readily available and moisture stable, the Suzuki coupling became one of die most commonly used mediods for die synthesis of a variety of polymers.18... [Pg.470]

Although there are several reports in the literature on boron-mediated amide formations, the boron reagents had to be used in stoichiometric amounts.1-4-5-6-7-8-9 Recently, Yamamoto et al. presented the first truly catalytic method allowing for a direct amide formation from free carboxylic acids and amines as the reaction partners.10-1112 Best results were obtained by using phenylboronic acids bearing electron withdrawing substituents in the meta- and/or para-positions such as 3,4,5-trifluorophenylboronic acid or 3,5-bis(trifluoromethyl)boronic acid as the catalysts. [Pg.137]

Manufacture The xylenes are obtained with benzene (and toluene) from the catalytic reforming of naphtha and separated from the aromatic mixture by distillation. From the mixed isomers, the ortho- can be obtained by distillation because its boiling point is sufficiently different. The meta- and para- are separated by either selective adsorption or by crystallization. [Pg.145]

The role of structural defects in MOFs has been probed as well. For instance, although the Zn atoms in intact MOF-5 are inaccessible for ligation, catalytic activities have been reported for this material, for instance, for esterification reactions or for para alkylation of large polyaromatic compounds [4, 60]. It is most probable that Zn-OH defects are created inside the pores as a consequence of adsorption of moisture [28]. [Pg.81]

As described in the previous section, the silica-alumina catalyst covered with the silicalite membrane showed exceUent p-xylene selectivity in disproportionation of toluene [37] at the expense of activity, because the thickness of the sihcahte-1 membrane was large (40 pm), limiting the diffusion of the products. In addition, the catalytic activity of silica-alumina was not so high. To solve these problems, Miyamoto et al. [41 -43] have developed a novel composite zeohte catalyst consisting of a zeolite crystal with an inactive thin layer. In Miyamoto s study [41], a sihcahte-1 layer was grown on proton-exchanged ZSM-5 crystals (silicalite/H-ZSM-5) [42]. The silicalite/H-ZSM-5 catalysts showed excellent para-selectivity of >99.9%, compared to the 63.1% for the uncoated sample, and independent of the toluene conversion. [Pg.220]

These three steps all produce significant amounts of waste. First, as discussed earlier, the nitration process results in the production of spent sulfuric acid. In the past the company had been able to sell much of this material to the coke and steel industries but declining demand meant that the acid now required disposing of, at additional cost. At the time green catalytic nitration technology was becoming available with clay, zeolite and lanthanide catalysts all providing possible alternatives to the use of sulfuric acid (see below). Improved selectivity to the desired para-isomer is an added benefit of some of these catalytic systems. However on the... [Pg.260]

Smith et al. (1998) have reported selective para acetylation of anisole, phenetole, and diphenyl ether with carboxylic anhydrides at 100 °C, in the presence of catalytic quantities of zeolites H-beta. The zeolite can be recovered and recycled to give essentially the same yield as that given by fresh zeolite. [Pg.154]


See other pages where Para catalytic is mentioned: [Pg.51]    [Pg.51]    [Pg.488]    [Pg.69]    [Pg.191]    [Pg.331]    [Pg.75]    [Pg.96]    [Pg.295]    [Pg.83]    [Pg.73]    [Pg.545]    [Pg.613]    [Pg.258]    [Pg.36]    [Pg.259]    [Pg.270]    [Pg.281]    [Pg.283]    [Pg.284]    [Pg.284]    [Pg.418]    [Pg.418]    [Pg.419]    [Pg.419]    [Pg.289]    [Pg.24]    [Pg.224]    [Pg.59]    [Pg.49]    [Pg.71]    [Pg.187]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Para-Xylene Manufacturing Catalytic Reactions and Processes

© 2024 chempedia.info