Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium displacement

Related to the Heck reaction is the Larock annulation of internal alkynes, which is a general route to heterocyclic and carbocyclic systems. Especially attractive is the construction of the pharmaceutically important indole ring system via palladium-catalyzed coupling of 2-iodo-aniline and the corresponding V-methyl, acetyl, and tosyl derivatives with a wide variety of internal alkynes. The catalytic process appears to involve arylpalladium formation, regioselective addition to the carbon-carbon triple bond, and subsequent intramolecular palladium displacement.- ... [Pg.328]

Trost proposed the following mechanism to account for these catalytic transformations. Reaction of the palladium catalyst with 377 generates jt-alkene palladium complex 378. Palladium removes the allylic hydrogen, with expulsion of the acetate moiety to generate the Jt-allyl palladium complex (379). Attack of a nucleophile at Ca leads to 380, with expulsion of the PdL2 species, whereas attack at Cb leads to 381. Palladium coordinates on the face of the alkene distal to the acetate (distant from the acetate Ca rather than Cb). Palladium displaces acetate with inversion (378 - 379). When the nucleophile displaces the palladium, a second inversion occurs at Ca or Cb, whichever is less sterically hindered, to give a net retention of configuration for the conversion 377 - 380 and/or 381. [Pg.1116]

The mechanism proceeds via a double inversion. The palladium displaces the acetate with inversion to give complex 91 and the incoming nucleophile approaches from the opposite face to the palladium, again with inversion. Therefore, overall retention of stereochemistry is observed in the product 92. [Pg.67]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

In the reaction of aryl and alkenyl halides with 1,3-pentadiene (248), amine and alcohol capture the 7r-allylpalladium intermediate to form 249. In the reactions of o-iodoaniline (250) and o-iodobenzyl alcohol (253) with 1,3-dienes, the amine and benzyl alcohol capture the Tr-allylpalladium intermediates 251 and 254 to give 252 and 255[173-175]. The reaction of o-iodoaniline (250) with 1,4-pen tadiene (256) affords the cyclized product 260 via arylpalladiuni formation, addition to the diene 256 to form 257. palladium migration (elimination of Pd—H and readdition to give 258) to form the Tr-allylpalladium 259, and intramolecular displacement of Tr-allylpalladium with the amine to form 260[176], o-Iodophenol reacts similarly. [Pg.164]

Vinyl acetate (ethenyl acetate) is produced in the vapor-phase reaction at 180—200°C of acetylene and acetic acid over a cadmium, 2inc, or mercury acetate catalyst. However, the palladium-cataly2ed reaction of ethylene and acetic acid has displaced most of the commercial acetylene-based units (see Acetylene-DERIVED chemicals Vinyl polymers). Current production is dependent on the use of low cost by-product acetylene from ethylene plants or from low cost hydrocarbon feeds. [Pg.393]

Reactive halogens in various series have been removed by catalytic hydrogenation with either platinum or palladium catalysts, and other nucleophiles which have been used in chloride displacements include hydroxide ion, alkoxides, hydrosulflde, hydrazine and toluene-p-sulfonylhydrazine, and trimethyl phosphite. [Pg.214]

Displacement of aromatic halogen in 2,4-diiodo-estradiol with tritiated Raney nickel yields 2,4-ditritiated estradiol. Aromatic halogen can also be replaced by heating the substrate with zinc in acetic acid-OD or by deuteration with palladium-on-charcoal in a mixture of dioxane-deuterium oxide-triethylamine, but examples are lacking for the application of these reactions in the steroid field. Deuteration of the bridge-head position in norbornane is readily accomplished in high isotopic purity by treatment of the... [Pg.202]

Preparation of the substituted piperazine required for sul-falene (114) starts with bromination of 2-aminopiperazine to give the dihalide (150). Displacement of halogen by sodium methoxide proceeds regioselectively at the more reactive 3 position to give 151. Hydrogenolysis over palladium on charcoal gives the desired intermediate (152). [Pg.131]

The postulated steps that constitute the Suzuki coupling process are shown in Scheme 25. After oxidative addition of the organic halide to the palladium(o) catalyst, it is presumed that a metathetical displacement of the halide substituent in the palladium(ii) complex A by ethoxide ion (or hydroxide ion) takes place to give an alkoxo-palladium(ff) complex B. The latter complex then reacts with the alkenylborane, generating the diorganopalladium complex C. Finally, reductive elimination of C furnishes the cross-coupling product (D) and regenerates the palladium(o) catalyst. [Pg.589]

Trost and coworkers7 have reported the use of palladium(O) as a catalyst for displacement of the phenylsulfonyl group by soft nucleophiles. Thus, treatment of allyl sulfone 12 with the sodium salt of dimethyl malonate in the presence of 5 mol % of... [Pg.762]

Direct nucleophilic displacement of halide and sulfonate groups from aromatic rings is difficult, although the reaction can be useful in specific cases. These reactions can occur by either addition-elimination (Section 11.2.2) or elimination-addition (Section 11.2.3). Recently, there has been rapid development of metal ion catalysis, and old methods involving copper salts have been greatly improved. Palladium catalysts for nucleophilic substitutions have been developed and have led to better procedures. These reactions are discussed in Section 11.3. [Pg.1004]

Kostic et al. reported the use of various palladium(II) aqua complexes as catalysts for the hydration and alcoholysis of nitriles,435,456 decomposition of urea to carbon dioxide and ammonia, and alcoholysis of urea to ammonia and various carbamate esters.457 Labile aqua or other solvent ligands can be displaced by a substrate. In many cases, the coordinated substrate thus becomes activated toward nucleophilic addition of water or alcohols. [Pg.595]

Kostic et al. recently reported the use of various palladium(II) aqua complexes as catalysts for the hydration of nitriles.456 crossrefil. 34 Reactivity of coordination These complexes, some of which are shown in Figure 36, also catalyze hydrolytic cleavage of peptides, decomposition of urea to carbon dioxide and ammonia, and alcoholysis of urea to ammonia and various carbamate esters.420-424, 427,429,456,457 Qggj-jy palladium(II) aqua complexes are versatile catalysts for hydrolytic reactions. Their catalytic properties arise from the presence of labile water or other solvent ligands which can be displaced by a substrate. In many cases the coordinated substrate becomes activated toward nucleophilic additions of water/hydroxide or alcohols. New palladium(II) complexes cis-[Pd(dtod)Cl2] and c - Pd(dtod)(sol)2]2+ contain the bidentate ligand 3,6-dithiaoctane-l,8-diol (dtod) and unidentate ligands, chloride anions, or the solvent (sol) molecules. The latter complex is an efficient catalyst for the hydration and methanolysis of nitriles, reactions shown in Equation (3) 435... [Pg.595]


See other pages where Palladium displacement is mentioned: [Pg.1288]    [Pg.1541]    [Pg.73]    [Pg.596]    [Pg.1288]    [Pg.1541]    [Pg.73]    [Pg.596]    [Pg.699]    [Pg.102]    [Pg.385]    [Pg.184]    [Pg.41]    [Pg.32]    [Pg.36]    [Pg.84]    [Pg.299]    [Pg.136]    [Pg.17]    [Pg.20]    [Pg.558]    [Pg.646]    [Pg.646]    [Pg.535]    [Pg.154]    [Pg.100]    [Pg.238]    [Pg.245]    [Pg.217]    [Pg.31]    [Pg.35]    [Pg.699]    [Pg.732]    [Pg.1336]    [Pg.593]    [Pg.640]    [Pg.653]    [Pg.688]    [Pg.495]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Alkyl palladium nucleophilic displacement

Allylic displacement reactions palladium catalyzed

Palladium complexes displacement reactions

© 2024 chempedia.info