Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes alkene

When the Pd bears chiral ligands, these reactions can be enantioselective.1448 ir-Allylmo-lybdenum compounds behave similarly.1449 Because palladium compounds are expensive, a catalytic synthesis, which uses much smaller amounts of the complex, was developed. That is, a substrate such as an allylic acetate, alcohol, amine, or nitro compound1450 is treated with the nucleophile, and a catalytic amount of a palladium salt is added. The rr-allylpal-ladium complex is generated in situ. Alkene-palladium complexes (introducing the nucleophile at a vinylic rather than an allylic carbon) can also be used.1451... [Pg.468]

This result has been explained72 390 by the particular instability of the alkene complex resulting from exocyclic addition (14) relative to endocyclic addition (15) in the cyclohexyl system. This rationale is supported by the results obtained by the use of the considerably more sterically bulky tri-o-tolylphos-phine instead of triphenylphosphine. A 13 83 exocyclic endocyclic ratio is obtained with the bulky phosphine. This result is nicely explained by the ability of the bulky phosphine to magnify the instability of the endocyclic alkene-palladium complex (14) relative to the exocyclic alkene complex (15) and favor endocyclic addition. [Pg.631]

In Section 16.5, a few other C,C coupling reactions of alkenes and of aromatic compounds, which contain an sp2—OTf, an sp2—Br, or an sp2—Cl bond, will be discussed because these C,C couplings and the preceding ones are closely related mechanistically. These substrates, however, react with metal-free alkenes. Palladium complexes again serve as the catalysts. [Pg.691]

The ff-complex obtained by the anti addition of an amine to a jS-alkene palladium complex was oxidatively transformed in a one-pot reaction to fi-acetoxy amines, 1,2-diamines, or aziridines, depending on the reagents employed. [Pg.875]

The mechanism for these oxidations involves addition of a nucleophile to an alkene-palladium complex, followed by a step that cleaves the Pd-C bond. WhUe Cu salts have been used commercially for reoxidation of the Pd , many other oxidants have been recommended, such as benzoquinone. Benzoquinone has an advantage for mechanistic studies over CuCU in that it does not affect the [CU] concentration. [Pg.3580]

Trost proposed the following mechanism to account for these catalytic transformations. Reaction of the palladium catalyst with 377 generates jt-alkene palladium complex 378. Palladium removes the allylic hydrogen, with expulsion of the acetate moiety to generate the Jt-allyl palladium complex (379). Attack of a nucleophile at Ca leads to 380, with expulsion of the PdL2 species, whereas attack at Cb leads to 381. Palladium coordinates on the face of the alkene distal to the acetate (distant from the acetate Ca rather than Cb). Palladium displaces acetate with inversion (378 - 379). When the nucleophile displaces the palladium, a second inversion occurs at Ca or Cb, whichever is less sterically hindered, to give a net retention of configuration for the conversion 377 - 380 and/or 381. [Pg.1116]

Other nucleophiles can also be used to attack the T -alkene palladium complexes. For instance, a nitrogen nucleophile was used in a transannular reaction to give a known precursor 6.103 to ferruginine (Scheme 6.34).5i The a a-stereochemistry in the nucleophilic attack is translated into the trans disposition of the nitrogen and ester groups in the product. [Pg.203]

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

Allylation of perfluoroalkyl halides with allylsilanes is catalyzed by iron or ruthenium carbonyl complexes [77S] (equation 119) Alkenyl-, allyl-, and alkynyl-stannanes react with perfluoroalkyl iodides 111 the presence ot a palladium complex to give alkenes and alkynes bearing perfluoroalkyl groups [139] (equation 120)... [Pg.478]

At the beginning of the 1970s a convenient procedure was described for converting olefins into substituted butanedioates, namely through a Pd(II)-cata-lysed bisalkoxycarbonylation reaction. So far various catalytic systems have been applied to this process, but it took twenty years before the first examples of an enantioselective bisalkoxycarbonylation of olefins were reported. Ever since, the asymmetric bisalkoxycarbonylation of alkenes catalysed by palladium complexes bearing chiral ligands has attracted much attention. The products of these reactions are important intermediates in the syntheses of pharmaceuticals such as 2-arylpropionic acids, the most important class of... [Pg.350]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

The synthesis, structure, and catalytic properties of a Pd11 complex with a partially hydrogenated ligand, shown in Figure 31, are described.393 This study provides the first asymmetric epoxidation of alkenes catalyzed by a palladium complex.393... [Pg.587]

Some synthetically useful isomerization reactions of alkenes, other than nitrogen- or oxygen-substituted allylic compounds, were reported by the use of a catalytic amount of transition metal complexes. The palladium complex, /ra r-Pd(C6HsCN)2Gl2, effectively catalyzed the stereoselective isomerization of /3,7-unsaturated esters to a,/3-unsaturated esters (Equation (26)). [Pg.93]

Addition of diphenyl disulfide (PhS)2 to terminal alkynes is catalyzed by palladium complexes to give l,2-bis(phe-nylthio)alkenes (Table 3)168-172 The reaction is stereoselective, affording the (Z)-adducts as the major isomer. A rhodium(i) catalyst system works well for less reactive aliphatic disulfides.173 Bis(triisopropylsilyl) disulfide adds to alkynes to give (Z)-l,2-bis(silylsulfanyl)alkenes, which allows further transformations of the silyl group to occur with various electrophiles.174,175 Diphenyl diselenide also undergoes the 1,2-addition to terminal alkynes in the presence of palladium catalysts.176... [Pg.752]

The reactions catalyzed by cationic palladium complexes are believed to proceed via a different mechanism (Scheme 67).273 Initially, a cationic silylpalladium(n) species is generated by cr-bond metathesis of the Br-Pd+ with a silylstannane. Subsequently, the alkyne and alkene moieties of the 1,6-diyne successively insert into the Pd-Si bond to form a cationic alkylpalladium(n), which then undergoes bond metathesis with silylstannane to liberate the product and regenerate the active catalyst species, S/-Pd+. [Pg.773]

Recently, another type of catalytic cycle for the hydrosilylation has been reported, which does not involve the oxidative addition of a hydrosilane to a low-valent metal. Instead, it involves bond metathesis step to release the hydrosilylation product from the catalyst (Scheme 2). In the cycle C, alkylmetal intermediate generated by hydrometallation of alkene undergoes the metathesis with hydrosilane to give the hydrosilylation product and to regenerate the metal hydride. This catalytic cycle is proposed for the reaction catalyzed by lanthanide or a group 3 metal.20 In the hydrosilylation with a trialkylsilane and a cationic palladium complex, the catalytic cycle involves silylmetallation of an alkene and metathesis between the resulting /3-silylalkyl intermediate and hydrosilane (cycle D).21... [Pg.816]

The dehalogenation of organic halides by organotin hydrides takes place in most cases with a free-radical mechanism [1, 84, 85], The stereospecific reduction of 1,1-dibromo-l-alkenes with Bu3SnH discovered by Uenishi and coworkers [86-89], however, did not occur in the absence of palladium complexes and did not involve radicals. For the synthesis of (Z)-l-bromo-l-alkenes, [(PPh3)4Pd] proved to be the most effective catalyst which could also be generated in situ. The reaction in Eq. (7) proceeded at room temperature and a wide range of solvents could be used. [Pg.525]

From the results of the 1,3-diene addition reaction, the metal-catalyzed reaction of unactivated alkenes was examined, and it was found that the palladium complex effectively catalyzed the a rt-Markovnikov addition of triarylphosphines and bis(trifluoromethanesulfonyl)imide (Tf2NH).24... [Pg.501]


See other pages where Palladium complexes alkene is mentioned: [Pg.551]    [Pg.627]    [Pg.234]    [Pg.430]    [Pg.248]    [Pg.935]    [Pg.551]    [Pg.627]    [Pg.234]    [Pg.430]    [Pg.248]    [Pg.935]    [Pg.154]    [Pg.140]    [Pg.950]    [Pg.1035]    [Pg.1056]    [Pg.316]    [Pg.950]    [Pg.334]    [Pg.179]    [Pg.182]    [Pg.190]    [Pg.190]    [Pg.194]    [Pg.276]    [Pg.438]    [Pg.439]    [Pg.727]    [Pg.388]    [Pg.389]    [Pg.392]    [Pg.497]    [Pg.501]    [Pg.502]   
See also in sourсe #XX -- [ Pg.842 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Alkenes arylation by palladium complexes

Alkenes catalysts, palladium complexes

Alkenes palladium-alkene complex

Alkenes palladium-nitro complex catalysts

Alkenes vinyl substitution with palladium complexes

Carbon-palladium complexes, alkene/alkyne insertion

Complexes alkenes

Palladium alkenes

Palladium complexes alkene oxidative reactions

Palladium®) complexes alkene/alkyne insertion

© 2024 chempedia.info