Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium-catalyzed reactions oxidative addition

Intramolecular arylation of G-H bonds gives cyclic aromatic compounds. In this intramolecular arylation, the carbon-palladium cr-bond is first formed by the oxidative addition of Pd(0) species and then the resulting electrophilic Pd(n) species undergoes the intramolecular G-H bond activation leading to the formation of the palladacycle, which finally affords the cyclic aromatic compounds via reductive elimination.87 For example, the fluoroanthene derivative is formed by the palladium-catalyzed reaction of the binaphthyl triflate, as shown in Scheme 8.88 This type of intramolecular arylation is applied to the construction of five- and six-membered carbocyclic and heterocyclic systems.89 89 89 ... [Pg.230]

In conclusion, the fantastically diverse chemistry of indole has been significantly enriched by palladium-catalyzed reactions. The accessibility of all of the possible halogenated indoles and several indolyl triflates has resulted in a wealth of synthetic applications as witnessed by the length of this chapter. In addition to the standard Pd-catalyzed reactions such as Negishi, Suzuki, Heck, Stille and Sonogashira, which have had great success in indole chemistry, oxidative coupling and cyclization are powerful routes to a variety of carbazoles, carbolines, indolocarbazoles, and other fused indoles. [Pg.163]

Chloroprene (2-chloro-l,3-butadiene 105), which is a mass-produced, inexpensive industrial material, is an excellent precursor to a variety of terminal allenes 107 [97]. The palladium-catalyzed reaction of 105 with pronucleophiles 106 in the presence of an appropriate base gave the terminal allenes 107 in good yields (Scheme 3.53). The palladium species generated from Pd2(dba)3-CHC13 and DPEphos was a good catalyst for these reactions of chloroprene. In contrast, (Z)-l-Phenyl-2-chloro-l,3-buta-diene, which is isostructural with the bromo-substrate 101, was nearly inert under these conditions. There is no substituent at the vicinal ris-position to the chloride in 105, which allows oxidative addition of the C-Cl bond in 105 to the Pd(0) species. [Pg.115]

The mechanism of the Zn chloride-assisted, palladium-catalyzed reaction of allyl acetate (456) with carbonyl compounds (457) has been proposed [434]. The reaction involves electroreduction of a Pd(II) complex to a Pd(0) complex, oxidative addition of the allyl acetate to the Pd(0) complex, and Zn(II)/Pd(II) transmetallation leading to an allylzinc reagent, which would react with (457) to give homoallyl alcohols (458) and (459) (Scheme 157). Substituted -lactones are electrosynthesized by the Reformatsky reaction of ketones and ethyl a-bromobutyrate, using a sacrificial Zn anode in 35 92% yield [542]. The effect of cathode materials involving Zn, C, Pt, Ni, and so on, has been investigated for the electrochemical allylation of acetone [543]. [Pg.583]

One of the most frequently studied transition metal catalyzed transformations of azoles and indole is their participation in cross-coupling reactions. Due to the abundance of examples in this field we only present some representative examples of the different reaction classes. In this chapter reactions where a halogenated azole is used to introduce the five membered ring onto the palladium in the oxidative addition and processes,... [Pg.97]

In spite of the successful use of NHCs in a number of palladium-catalyzed reactions, no system for hydrogenation was reported until 2005. This can be easily explained as it had been observed that hydridopalladium-carbene species decompose due to attack of the hydride on the carbene, which results in its reductive elimination to yield the corresponding imidazolium salt [ 190]. However, Cavell and co-workers recently showed that the oxidative addition of imidazolium salts to bis-carbenic palladium complexes leads to isolable NHC-hydridopalladium complexes [191]. This elegant work evidenced the remarkable stabilizing effect of NHC ligands in otherwise reactive species and led to the development of the first NHC-palladium catalyst for hydrogenation. [Pg.70]

Bulky ligands as above have also proved to be effective in other palladium-catalyzed reactions of aryl halides, e.g., amination [16-19], Suzuki-Miyaura reaction [20-22], Mizoroki-Heck reaction [23, 24], Migita-Kosugi-Stille reaction [25], and aryloxylation and alkoxylation [26-28] as well as the reaction with various carbon nucleophiles as described below. The ligands are considered to enhance both the initial oxidative addition of aryl halides and the reductive elimination of products [29, 30]. The effectiveness of the commercially available simple ligand, P(f-Bu)3, was first described for the amination by Nishiyama et al. [16]. [Pg.214]

The numerous palladium-catalyzed organic reactions have a relatively small number of elementary steps. Oxidative Addition, Reductive Elimination, ligand coordination, and addition to coordinated ligands (either intramolecular or intermolecu-lar) are the most important classes of transformations in most palladium catalytic cycles. The exact nature of the species within the coordination sphere of palladium and the order in which the steps take place are responsible for the variety of the organic products produced. Four representative and important palladium-catalyzed reactions are briefly discussed here to illustrate the range of organopalladium reactions. [Pg.3549]

Oxidative addition of a C-X bond to a metal is of centtal importance to organometallic chemistry and specially to its application in organic synthesis. Apart from the classic Grignard synthesis of RMgX and related species, a multitude of palladium catalyzed reactions (Mizoroki-Heck, Suzuki-Miyaura, Hartwig-Buchwald. ..) go by this initial step. [Pg.5751]

A new synthetic method for steroids has been developed using a butadiene dimer (66) as a building block and the palladium-catalyzed oxidation as the key reaction.3-Acetoxy-l,7-octadiene (66), prepared by the palladium-catalyzed reaction of butadiene with acetic acid, is hydrolyzed and oxidized to l,7-octadien-3-one (67) in high yield. The enone (67) is a very useful reagent for bisanellation because its termiiud double bond can be regarded as a masked ketone which can be readily unmasked by the palladium catalyst to form the l,S-diketone (68) after Michael addition at the enone moiety of (67 Scheme 20). Thus, the enone (67) is the cheapest and most readily available bisanellation reagent, permitting a simple total synthesis of steroids. [Pg.460]

Palladium-catalyzed 1,4-additions to conjugated dienes can be divided into two classes (1) non-oxidation reactions that (2) oxidation reactions. In the former class, a palladium(O) catalyst is employed and the first step in the catalytic cycle is often an activation of one of the reactants by its oxidative addition to Pd(0). In the second class, a palladium(II) complex is the active catalyst which oxidizes the substrate diene with formation of Pd(0). Reoxidation of Pd(0) to Pd(II) by an oxidant regenerates the active catalyst. [Pg.451]

Similar to the nickel-catalyzed reactions, metallacycles of palladium are assumed to be intermediates of these conversions. They were isolable in some cases. Thus, 3,3-dimethylcyclopropene with -allyl( ) -cyclopentadienyl)palladium, on cyclizing oxidative addition, formed metallacyclopentanes 20 and metallacyclononanes 21, depending on the reaction conditions. Thermal decomplexation via reductive elimination gave cyclopropane systems and products thereof. ... [Pg.1881]


See other pages where Palladium-catalyzed reactions oxidative addition is mentioned: [Pg.328]    [Pg.2]    [Pg.585]    [Pg.345]    [Pg.511]    [Pg.672]    [Pg.355]    [Pg.97]    [Pg.371]    [Pg.947]    [Pg.218]    [Pg.148]    [Pg.55]    [Pg.385]    [Pg.161]    [Pg.288]    [Pg.212]    [Pg.53]    [Pg.226]    [Pg.46]    [Pg.174]    [Pg.368]    [Pg.318]    [Pg.11]    [Pg.469]    [Pg.598]    [Pg.56]    [Pg.469]    [Pg.12]    [Pg.6]    [Pg.348]    [Pg.435]    [Pg.511]   
See also in sourсe #XX -- [ Pg.1006 , Pg.1008 , Pg.1011 ]

See also in sourсe #XX -- [ Pg.1006 , Pg.1008 , Pg.1011 ]




SEARCH



Addition catalyzed

Addition-oxidation reactions

Oxidation oxidative addition reaction

Oxidation palladium

Oxidations palladium-catalyzed

Oxidative addition reactions

Palladium -catalyzed oxidative

Palladium oxidative addition

Palladium oxidative addition reactions

Palladium oxide

Palladium oxidized

Palladium-catalyzed oxidative addition

Palladium-catalyzed reactions

Palladium®) addition reactions

© 2024 chempedia.info