Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ozone reactions with heterocyclic compounds

Reactions which formally involve the oxidation of azides have been reviewed by Boyer. Other oxidations with useful synthetic applications include two which start from nitrogen ylides. Sulfimides (50) derived from electron-deficient aromatic and heterocyclic amines are oxidized to the corresponding nitroso compounds by MCPBA. - This is a very useful method of preparation of some otherwise inaccessible nitroso compounds such as 2-nitrosopyridine and 1-nitrosoisoquinoline. They can be further oxidized, for example by ozone, to the nitro compounds. Phosphimides (51) are oxidized directly by ozone to the nitro compounds, although the nitroso compounds are intermediates. Isocyanates can also be oxidized to the corresponding nitro compounds, by dimediyldioxiraiK (1). ... [Pg.752]

Numerous heterocyclic compounds can be oxidized with ozone to deliver derivatives useful in synthesis and the reaction products can be tuned according to the additives and conditions in the reaction medium. When treated with ozone, pyrimidine-2-thiones and 2-thiouracils react to give several p3Timidine derivatives (eq 57). Use of aprotic solvents or ozonolysis without an active nucleophile yields dimerization products, whereas ozonolysis in protic solvents or in the presence of a nucleophile leads to the sulfinic acid derivative that can then be converted to several products depending on workup conditions. The parent pyrimidine can be isolated when acid is introduced into the medium, and with an equal volume of water the pyrimidinone product is isolated. While a protic solvent, EtOH in the medium acts as a nucleophile to deliver the 2-ethoxypyrimidine. [Pg.299]

The addition of ozone (O3) to alkenes to give a primary ozonide (molozonide), which rearranges to an ozonide and eventually leads, on reduction, to carbonyl compounds (aldehydes and/or ketones), has already been mentioned and the reaction itself is shown in Scheme 6.11. However, it is important to recognize that this is only one example of a 4th- 2n electrocyclic addition and that orbital overlap for many sets of these reactions dictates their courses as well. Thus, to show the similarity of some of these dipolar 3 -f 2 addition reactions Equations 6.53-6.56 are provided. Although any alkene might be used as an example, (Z)-2-butene is used in each to emphasize that aU of them occur with retention of stereochemistry and, in the first (Equation 6.53), the reaction with ozone to form the primary ozonide (molozonide) is presented again (i.e., see Scheme 6.11). In a similar way, with a suitable azide, R-N3, readily prepared from an alkyl halide (Chapter 7), the same alkene forms a triazoline (Equation 6.54) and with nitrous oxide (N2O) the heterocycle (Chapter 13) cis -4,5-dimethyl-A -l,2,3-oxadiazoline (ds-4,5-dihydro-4,5-dimethyl-l,2,3-oxadiazole) (Equation 6.55). Finally, with a nitrile oxide, such as the oxide derived from ethanenitrile (acetonitrile [CH3ON]), the same alkene yields a different heterocycle, the dihydroisoxazole, 3,4,5-trimethyl-4,5-dihydroisoxazole (Equation 6.56). [Pg.366]

Chemical/Physical. The gas-phase reaction of ozone with pyridine in synthetic air at 23 °C yielded a nitrated salt having the formula [CeHsNHJ NOs (Atkinson et al., 1987). Ozonation of pyridine in aqueous solutions at 25 °C was studied with and without the addition of ferf-butyl alcohol (20 mM) as a radical scavenger. With tert-hniyX alcohol, ozonation of pyridine yielded mainly pyridine W-oxide (80% yield), which was very stable towards ozone. Without terf-butyl alcohol, the heterocyclic ring is rapidly cleaved forming ammonia, nitrate, and the amidic compound W-formyl oxamic acid (Andreozzi et al., 1991). [Pg.997]

This route to the a-nitroso derivatives of the 7r-deficient heterocycles has permitted an exploration of their chemistry. They are extremely reactive and condense readily with 1,3-dienes to give 3,6-dihydro-l,2-oxazines (e.g. 99), and with aromatic amines in the presence of acid to give azo compounds (Scheme 86). This latter reaction is particularly useful in view of the instability of the corresponding 2-pyridinediazonium salts referred to above, which limits conventional access. The a-nitroso heterocycles are oxidized by ozone or sodium hypochlorite to the a-nitro compounds (Scheme 86) (82JOC553). [Pg.344]

There are six possible five-membered monocycles 1-6 containing three oxygen or sulfur atoms in the 1,2,3-positions <1996CHEC-II(4)545>. 1,2,3-Trioxolane 1 is the parent compound of the so-called primary ozonides, the primary reaction products in the reaction of alkenes with ozone. They are extremely unstable and rearrange to the more stable ozonides (1,2,4-trioxolanes). This rearrangement represents a key step in the reaction of ozonolysis. However, the parent compound 1 and a few derivatives have been characterized at low temperatures (see Section 6.05.10.1). 1,2,3-Trithiolanes have been synthesized (Section 6.05.10.3) some of them undergo slow decomposition at room temperature. Derivatives of 1,2,3-dioxathiolane 3 are unknown, and the other heterocycles of the mixed types 4-6 are known only in the oxidized forms, mostly as -oxides and J -dioxides, and also A-imino and A-thiono derivatives <1996CHEC-II(4)545>. The A-oxides and AA -dioxides of... [Pg.146]


See other pages where Ozone reactions with heterocyclic compounds is mentioned: [Pg.774]    [Pg.805]    [Pg.529]    [Pg.784]    [Pg.105]    [Pg.546]    [Pg.852]    [Pg.76]    [Pg.852]    [Pg.2113]   
See also in sourсe #XX -- [ Pg.326 , Pg.327 ]




SEARCH



Heterocycles reaction

Heterocyclization reactions

Ozone reaction

Ozonization reaction

Reaction with heterocycles

Reaction with ozone

© 2024 chempedia.info