Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ozone layer chlorofluorocarbons

Other gases with significant anthropogenic sources contribute to acid rain (NO and SO ), the reduction of the ozone layer (chlorofluorocarbons), nutrient transport (NHj... [Pg.147]

Because of increasing evidence of damage to the ozone layer, chlorofluorocarbon (CFC) production was banned in 1996. However, there are about 100 million auto air conditioners in operation that stdl use CFC-12 (CF2CI2). These air conditioners are recharged from stockpiled supplies of CFC-12. If each of the 100 milhon automobiles contains 1.1 kg of CFC-12 and leaks 25% of its CFC-12 into the atmosphere per year, how much chlorine, in kg, is added to the atmosphere each year due to auto air conditioners (Assume two significant figures in your calculations.)... [Pg.135]

One of the chief uses of chloromethane is as a starting material from which sili cone polymers are made Dichloromethane is widely used as a paint stripper Trichloromethane was once used as an inhalation anesthetic but its toxicity caused it to be replaced by safer materials many years ago Tetrachloromethane is the starting mate rial for the preparation of several chlorofluorocarbons (CFCs) at one time widely used as refrigerant gases Most of the world s industrialized nations have agreed to phase out all uses of CFCs because these compounds have been implicated m atmospheric processes that degrade the Earth s ozone layer... [Pg.167]

The other global environmental problem, stratospheric ozone depletion, was less controversial and more imminent. The U.S. Senate Committee Report supporting the Clean Air Act Amendments of 1990 states, Destruction of the ozone layer is caused primarily by the release into the atmosphere of chlorofluorocarbons (CFCs) and similar manufactured substances—persistent chemicals that rise into the stratosphere where they catalyze the destruction of stratospheric ozone. A decrease in stratospheric ozone will allow more ultraviolet (UV) radiation to reach Earth, resulting in increased rates of disease in humans, including increased incidence of skin cancer, cataracts, and, potentially, suppression of the immune system. Increased UV radiation has also been shown to damage crops and marine resources."... [Pg.16]

An important effect of air pollution on the atmosphere is change in spectral transmission. The spectral regions of greatest concern are the ultraviolet and the visible. Changes in ultraviolet radiation have demonstrable adverse effects e.g., a decrease in the stratospheric ozone layer permits harmful UV radiation to penetrate to the surface of the earth. Excessive exposure to UV radiation results in increases in skin cancer and cataracts. The worldwide effort to reduce the release of stratospheric ozone-depleting chemicals such as chlorofluorocarbons is directed toward reducing this increased risk of skin cancer and cataracts for future generations. [Pg.375]

As you know, most countries are phasing out certain refrigerants to lessen damage to the ozone layer. The chemicals being phased out are chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Replacements are hydrofluorocarbons (HFCs) and certain blends. The DuPont web site (www.dupont.com) gives the handy Table I of recommended replacement refrigerants for various applications. [Pg.182]

Another area of potential interest is in refrigerator liners. The move away from the ozone-layer-damaging chlorofluorocarbons (CFCs) to HCFCs in the USA and pentane/cyclopentane blends in Europe has not been without problems. These newer materials have an adverse effect on ABS whereas the nitrile resin appears satisfactory, if more expensive. [Pg.417]

During the 1980s, it became recognized that chlorofluorocarbons (CFCs), widely used as aerosol propellants, are damaging the ozone layer, and aerosol manufacturers were asked to use other propellants. Some... [Pg.70]

The question of the fate of chlorofluorocarbons upon their release into the atmosphere IS of great interest at present because of the potential damage to the earth s protective ozone layer caused by the reaction of ozone with photochemically generated chlorine atoms... [Pg.436]

Unfortunately, the thermodynamically favored reactions of trichlo-rolluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) with water do not proceed to a significant degree below 300 C and at least 200 atm (1 atm = 101.325 kPa) or greater [42] (equation 44) Even at 4000 atm randoimzation rather than complete hydrolysis occurs, leaving another chlorofluorocarbon, chlorotri-fluoromethane (CFC-13), which is also potentially harmful to the earth s ozone layer... [Pg.436]

The formed mixture is composed of trichlorofluoromethane (Freon-11) and dichlorodifluoromethane (Freon-12). These compounds are used as aerosols and as refrigerants. Due to the depleting effect of chlorofluorocarbons (CFCs) on the ozone layer, the production of these compounds may be reduced appreciably. [Pg.140]

Freons. types of chlorofluorocarbons, at one time were used extensively in spray cans and as coolants in refrigerators and air conditioners. Unfortunately, they contribute to global warming and attack the Earth s protective ozone layer. One of the most promising substitutes is C2H2F4, which is called HFC-134a in industry. The reaction... [Pg.119]

Ever) year our planet is bombarded with enough energy from the Sun to destroy all life. Only the ozone in the stratosphere protects us from that onslaught. The ozone, though, is threatened by modern life styles. Chemicals used as coolants and propellants, such as chlorofluorocarbons (CFCs), and the nitrogen oxides in jet exhausts, have been found to create holes in Earth s protective ozone layer. Because they act as catalysts, even small amounts of these chemicals can cause large changes in the vast reaches of the stratosphere. [Pg.688]

Mario Molina and Sherwood Rowland used Crutzen s work and other data in 1974 to build a model of the stratosphere that explained how chlorofluorocarbons could threaten the ozone layer. In 1985, ozone levels over Antarctica were indeed found to be decreasing and had dropped to the lowest ever observed by the year 2000, the hole had reached Chile. These losses are now known to be global in extent and it has been postulated that they may be contributing to global warming in the Southern Hemisphere. [Pg.688]

The following mechanism has been suggested to explain the contribution of chlorofluorocarbons to the destruction of the ozone layer ... [Pg.698]

The haloalkanes (also called alkyl halides) are alkanes in which at least one hydrogen atom has been replaced by a halogen atom. Although they have important uses, many haloalkanes are highly toxic and a threat to the environment. The haloalkane 1,2-dichlorofluoroethane, CHC1FCH2C1, is an example of a chlorofluorocarbon (CFC), one of the compounds held responsible for the depletion of the ozone layer (see Box 13.3). Many pesticides are aromatic compounds with several halogen atoms. [Pg.874]

Evidence that many of these compounds can have adverse effects on the immune, endocrine and nervous systems and that some are carcinogenic has grown during the last decade. The role of chlorofluorocarbons (CFCs) and of methyl bromide in the ozone layer depletion is well established (ref. 3).It is therefore not surprising that many halogenated derivatives are cast as environmental and health villains by various concerned groups who call for total phase out of chlorine and chlorinated hydrocarbons. [Pg.1]

A typical example of the interaction between hypothesis and experiment is the story of the work that resulted in worldwide concern over the depletion of the ozone layer in the stratosphere. These studies led to the awarding of the 1995 Nobel Prize for Chemistry to Paul Crutzen, Mario Molina, and F. Sherwood Rowland. Figure FT provides a schematic view of how this prize-winning research advanced. It began in 1971 when experiments revealed that chlorofluorocarbons, or CFCs, had appeared in the Earth s atmosphere. At the time, these CFCs were widely used as refrigerants and as aerosol propellants. Rowland wondered what eventually would happen to these gaseous compounds. He carried out a theoretical analysis, from which he concluded that CFCs are very durable and could persist in the atmosphere for many years. [Pg.7]

This flow chart illustrates how the scientific process led to worldwide concern over the effect of chlorofluorocarbons on the ozone layer. [Pg.8]

The chlorine atoms in the upper atmosphere come from the breakdown of CF2 CI2 and other similar chlorofluorocarbons (CFCs), known commercially as Freons. Production of these compounds was more than one million tons in 1988, largely for use in relrigerators and air conditioners. Once released into the atmosphere, CFCs diffuse slowly upward in the atmosphere until they reach the ozone layer. There, ultraviolet light Irom the sun splits off chlorine atoms. These react with ozone, with dramatic results. Annual ozone decreases have exceeded 50% above Antarctica. The background photo shows the Antarctic hole (red-violet) on September 24, 2003. [Pg.1046]

Until recently, chlorofluorocarbons (CFCs) for refrigeration were major end products of HF chemistry, but these compounds are being phased out in accord with the Montreal Protocols because of their effect on the ozone layer (see Chapter 15). [Pg.1540]

The term CFCs is a general abbreviation for ChloroFluoroCarbons. They have been extensively used since their discovery in the thirties, mainly as refrigerant, foam blowing agent, or solvent because of their unique properties (non toxic, non flammable, cheap). However, after the first warning of Rowland and Molina [1] in 1974 that CFCs could destroy the protective ozone layer, the world has moved rapidly towards a phase-out of CFCs. Because the destruction of stratospheric ozone would lead to an increase of harmful UV-B radiation reaching the earth s surface, the production and use of CFCs is prohibited (since January 1, 1995 in the European Union and since January 1, 1996 worldwide). [Pg.369]

Over the next two years, Midgley and his group discovered and patented other chlorofluorocarbons and the halons, a class of bromofluoro-carbon compounds that are the world s best Are fighters. At the time, their remarkable stability seemed like an advantage. In the 1970s scientists were able to determine that CFCs and halons—which are so stable that they remain in the atmosphere for long periods of time—deplete the ozone layer 15 miles above Earth. [Pg.99]


See other pages where Ozone layer chlorofluorocarbons is mentioned: [Pg.55]    [Pg.280]    [Pg.202]    [Pg.55]    [Pg.280]    [Pg.202]    [Pg.132]    [Pg.32]    [Pg.2339]    [Pg.20]    [Pg.38]    [Pg.395]    [Pg.13]    [Pg.32]    [Pg.300]    [Pg.1089]    [Pg.1092]    [Pg.1092]    [Pg.1092]    [Pg.997]    [Pg.29]    [Pg.69]    [Pg.685]    [Pg.24]    [Pg.26]    [Pg.54]    [Pg.68]    [Pg.496]    [Pg.36]   
See also in sourсe #XX -- [ Pg.632 ]




SEARCH



Chlorofluorocarbon ozone

Chlorofluorocarbons

Chlorofluorocarbons and the Ozone Layer

Ozone layer chlorofluorocarbons destruction

Ozone layer, aerosol chlorofluorocarbons

© 2024 chempedia.info