Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ozone concentrations

Measurements of ozone concentration in the ozone layer in the stratosphere are made in the less intense Huggins band to avoid complete absorption of the laser radiation. Again, the two or three wavelength DIAL method is used to make allowance for background aerosol scattering. A suitable laser for these measurements is the XeCl pulsed excimer laser (see Section 9.2.8) with a wavelength of 308 nm, close to the peak absorption of the Huggins... [Pg.381]

We saw in Section 9.3.8 that spectroscopy, in the form of LIDAR, is a very important tool for measuring ozone concentration directly in the atmosphere. A useful indirect method involves the measurement of the concentration of oxygen which is formed from ozone by photolysis ... [Pg.384]

Ozone concentrations Ozone control Ozone cracking Ozone depletion... [Pg.715]

Most ozone is formed near the equator, where solar radiation is greatest, and transported toward the poles by normal circulation patterns in the stratosphere. Consequendy, the concentration is minimum at the equator and maximum for most of the year at the north pole and about 60°S latitude. The equihbrium ozone concentration also varies with altitude the maximum occurs at about 25 km at the equator and 15—20 km at or near the poles. It also varies seasonally, daily, as well as interaimuaHy. Absorption of solar radiation (200—300 nm) by ozone and heat Hberated in ozone formation and destmction together create a warm layer in the upper atmosphere at 40—50 km, which helps to maintain thermal equihbrium on earth. [Pg.495]

Similar heterogeneous reactions also can occur, but somewhat less efticientiy, in the lower stratosphere on global sulfate clouds (ie, aerosols of sulfuric acid), which are formed by oxidation of SO2 and COS from volcanic and biological activity, respectively (80). The effect is most pronounced in the colder regions of the stratosphere at high latitudes. Indeed, the sulfate aerosols resulting from emptions of El Chicon in 1982 and Mt. Pinatubo in 1991 have been impHcated in subsequent reduced ozone concentrations (85). [Pg.496]

R is hydrogen, alkenyl, or alkyne. In remote tropospheric air where NO concentrations ate sometimes quite low, HO2 radicals can react with ozone (HO2 + O3 — HO + 2 O2) and result in net ozone destmction rather than formation. The ambient ozone concentration depends on cloud cover, time of day and year, and geographical location. [Pg.497]

Experimental studies show that the ozone concentration iacreases with specific energy (eV/O2) before reaching a steady state. The steady-state ozone concentration varies iaversely with temperature but directiy with pressure, reaching a maximum at about 101.3 kPa (1 atm). Above atmospheric pressure the steady-state ozone concentration decreases with pressure, apparentiy due to the pressure dependence of the rate constant ratio for the... [Pg.498]

Because of the formation of nitrogen oxides, a steady-state ozone concentration cannot be obtained instead, due to the buHdup of nitrogen oxides, an increase in residence time in the discharge results in a decrease in ozone concentration beyond the maximum value. Thus, there is an optimum residence time for maximum ozone production. [Pg.498]

Ozone Generator Design. A better understanding of discharge physics and the chemistry of ozone formation has led to improvements in power density, efficiency, and ozone concentration, initiating a trend toward downsizing. [Pg.499]

Disinfection. Ozone is a more effective broad-spectmm disinfectant than chlorine-based compounds (105). Ozone is very effective against bacteria because even concentrations as low as 0.01 ppm are toxic to bacteria. Whereas disinfection of bacteria by chlorine involves the diffusion of HOGl through the ceU membrane, disinfection by ozone occurs with the lysing (ie, mpture) of the ceU wall. The disinfection rate depends on the type of organism and is affected by ozone concentration, temperature (106), pH, turbidity, clumping of organisms, oxidizable substances, and the type of contactor employed (107). The presence of oxidizable substances in ordinary water can retard disinfection until the initial ozone demand is satisfied, at which point rapid disinfection is observed. [Pg.501]

Chemiluminescent analyzers are based on the light (chemiluminescence) emitted in the gas-phase reaction of ozone with ethylene, which is measured with a photomultipHer tube. The resulting current is proportional to the ozone concentration (see Luminescent materials, chemiluminescence). [Pg.503]

Depletion of the Ozone Layer. As a constituent of the atmosphere, ozone forms a protective screen by absorbing radiation of wavelengths between 200 and 300 nm, which can damage DNA and be harmful to life. Consequently, a decrease in the stratospheric ozone concentration results in an increase in the uv radiation reaching the earth s surfaces, thus adversely affecting the climate as well as plant and animal life. Pot example, the incidence of skin cancer is related to the amount of exposure to uv radiation. [Pg.503]

Environmental Impact of Ambient Ozone. Ozone can be toxic to plants, animals, and fish. The lethal dose, LD q, for albino mice is 3.8 ppmv for a 4-h exposure (156) the 96-h LC q for striped bass, channel catfish, and rainbow trout is 80, 30, and 9.3 ppb, respectively. Small, natural, and anthropogenic atmospheric ozone concentrations can increase the weathering and aging of materials such as plastics, paint, textiles, and mbber. For example, mbber is degraded by reaction of ozone with carbon—carbon double bonds of the mbber polymer, requiring the addition of aromatic amines as ozone scavengers (see Antioxidants Antiozonants). An ozone decomposing polymer (noXon) has been developed that destroys ozone in air or water (157). [Pg.504]

Although the naturally occurring concentration of ozone at the earth s surface is low, the distribution has been altered by the emission of pollutants, primarily by automobiles but also from industrial sources which lead to the formation of ozone. The strategy for controlling ambient ozone concentrations arising from automobile exhaust emissions is based on the control of hydrocarbons, CO, and NO via catalytic converters. As a result, peak ozone levels in Los Angeles, for instance, have decreased from 0.58 ppm in 1970 to 0.33 ppm in 1990, despite a 66% increase in the number of vehicles. [Pg.504]

Physical Factors. Unsatuiated elastomers must be stretched for ozone cracking to occur. Elongations of 3—5% are generally sufficient. Crack growth studies (10—18) have shown that some minimum force, called the critical stress, rather than a minimum elongation is required for cracking to occur. Critical stress values are neady the same for most unsaturated mbbers. However, polychloroprene has a higher critical stress value than other diene mbbers, consistent with its better ozone resistance. It has been found that temperature, plasticization, and ozone concentration have httie effect on critical stress values. [Pg.236]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Nonattainment area classification One-hour ozone concentration design value, ppm Attainment date Major source threshold level, tons VOGs/yr Offset ratio for new/modified sources... [Pg.2159]

Selective Catalytic Reduction of Nitrogen Oxides The traditional approach to reducing ambient ozone concentrations has been to reduce VOC emissions, an ozone precurssor. In many areas, it has now been recognized that ehmination of persistent exceedances of the National Ambient Air Qnality Standard for ozone may reqnire more attention to reductions in the other ingredients in ozone formation, nitrogen oxides (NOJ. In such areas, ozone concentrations are controlled by NO rather than VOC emissions. [Pg.2195]

Fig. 4-5. Annual second highest daily maximam 1-hr ozone concentration at 495 sites in the United States for 1982-1991, Source U.S. Environmental Protection Agency, 1992. Fig. 4-5. Annual second highest daily maximam 1-hr ozone concentration at 495 sites in the United States for 1982-1991, Source U.S. Environmental Protection Agency, 1992.
What does the answer to question 2 indicate about the functional dependence of ozone concentrations on the absolute magnitude of [NOj] = [NO] + [NO2] ... [Pg.178]

Hundreds of chemical species are present in urban atmospheres. The gaseous air pollutants most commonly monitored are CO, O3, NO2, SO2, and nonmethane volatile organic compounds (NMVOCs), Measurement of specific hydrocarbon compounds is becoming routine in the United States for two reasons (1) their potential role as air toxics and (2) the need for detailed hydrocarbon data for control of urban ozone concentrations. Hydrochloric acid (HCl), ammonia (NH3), and hydrogen fluoride (HF) are occasionally measured. Calibration standards and procedures are available for all of these analytic techniques, ensuring the quality of the analytical results... [Pg.196]

Determine which month and location have the greatest number of hours with ozone concentrations a.01 ppm, using Table 15-3. [Pg.228]

Describe the chemical behavior of the and ozone concentration profiles of the St. Louis urban plume in Fig. 15-2. What is the reason for the sharp increase of b t and the sharp decrease of ozone in the vicinity of power plants ... [Pg.228]

The horizontal dispersion of a plume has been modeled by the use of expanding cells well mixed vertically, with the chemistry calculated for each cell (31). The resulting simulation of transformation of NO to NO2 in a power plant plume by infusion of atmospheric ozone is a peaked distribution of NO2 that resembles a plume of the primary pollutants, SO2 and NO. The ozone distribution shows depletion across the plume, with maximum depletion in the center at 20 min travel time from the source, but relatively uniform ozone concentrations back to initial levels at travel distances 1 h from the source. [Pg.330]

The emission inventory and the initial and boundary conditions of pollutant concentrations have a large impact on the ozone concentrations calculated by photochemical models. [Pg.331]

Seinfeld (33) indicates that photochemical models estimating peak ozone concentrations in urban areas are generally within 30% of measured peaks. [Pg.337]


See other pages where Ozone concentrations is mentioned: [Pg.381]    [Pg.382]    [Pg.405]    [Pg.491]    [Pg.496]    [Pg.498]    [Pg.498]    [Pg.499]    [Pg.499]    [Pg.501]    [Pg.501]    [Pg.503]    [Pg.503]    [Pg.236]    [Pg.238]    [Pg.30]    [Pg.197]    [Pg.221]    [Pg.25]    [Pg.29]    [Pg.30]    [Pg.30]    [Pg.31]    [Pg.31]    [Pg.232]   
See also in sourсe #XX -- [ Pg.189 ]

See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.48 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 ]

See also in sourсe #XX -- [ Pg.82 , Pg.86 , Pg.87 , Pg.104 ]




SEARCH



Ambient ozone concentrations

Dissolved ozone concentration

Equilibrium Concentration for Ozone

Ozone atmospheric concentration

Ozone concentration atmosphere

Ozone concentration in air

Ozone concentration increase

Ozone concentrations influences

Ozone concentrations seasonal fluctuations

Ozone equilibrium concentration

Ozone historic concentration

Ozone steady-state concentrations

Stratospheric ozone concentration

© 2024 chempedia.info