Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxides cyclopentadiene

Oxidation. Cyclopentadiene reacts spontaneously with oxygen to form brown, gummy products that usually contain substantial amounts of... [Pg.431]

Cinnamoyl chloride Cobalt carbonate hydroxide N-Coco dipropylene triamine Cocopropylenediamine C9-11 pareth-3 C9-11 pareth-6 C9-11 pareth-8 C10-12 pareth-5 C12-15 pareth-6 Cresylic acid 2-Cyanoethyltriethoxysilane 3-Cyanopropyltrichlorosilane Cyclohexane Cyclohexene oxide Cyclopentadiene Decamethylcyclopentasiloxane Decane nitrile 1-Decanethiol Decanoyl chloride Dehydroacetic acid... [Pg.5386]

The generic term azulene was first applied to the blue oils obtained by distillation, oxidation, or acid-treatment of many essential oils. These blue colours are usually due to the presence of either guaiazulene or velivazulene. The parent hydrocarbon is synthesized by dehydrogenation of a cyclopentanocycloheptanol or the condensation of cyclopentadiene with glutacondialdehyde anil. [Pg.49]

Cyclopentadiene (2.5) was prepared from its dimer (Merck-Schuchardt) immediately before use. Dimineralised water was distilled twice in a quartz distillation unit. Ethanol (Merck) was of the highest purity available. Acetonitrile (Janssen) was mn over basic aluminium oxide prior to use. 2,2,2-Trifluoroethanol (Acros) was purified by distillation (bp 79 - C). Co(N03)2 6H20,... [Pg.64]

Preparation. The industrial production of malonic acid is much less important than that of the malonates. Malonic acid is usually produced by acid saponification of malonates (9). Further methods which have been recendy investigated are the ozonolysis of cyclopentadiene [542-92-7] (10), the air oxidation of 1,3-propanediol [504-63-2] (11), or the use of microorganisms for converting nitriles into acids (12). [Pg.465]

Sulfur Polymer Cement. SPC has been proven effective in reducing leach rates of reactive heavy metals to the extent that some wastes can be managed solely as low level waste (LLW). When SPC is combined with mercury and lead oxides (both toxic metals), it interacts chemically to form mercury sulfide, HgS, and lead sulfide, PbS, both of which are insoluble in water. A dried sulfur residue from petroleum refining that contained 600-ppm vanadium (a carcinogen) was chemically modified using dicyclopentadiene and oligomer of cyclopentadiene and used to make SC (58). This material was examined by the California Department of Health Services (Cal EPA) and the leachable level of vanadium had been reduced to 8.3 ppm, well below the soluble threshold limit concentration of 24 ppm (59). [Pg.126]

Cyclopentadiene has also been oxidized by singlet oxygen to 4,5-epoxypenten-2-al-l, cis and trans isomers. These compounds and their hydrogenated diol products are claimed as useful intermediates as cross-linking agents, and in the production of pesticides and perfumes (34). [Pg.432]

Few isothiazoles undergo simple cycloaddition reactions. 4-Nitroisothiazoles add to alkynes (see Section 4.17.7.4). With 5-thiones (84) and dimethyl acetylenedicarboxylate, addition to both sulfur atoms leads to 1,3-dithioles (85) (77SST(4)339, 80H(14)785, 81H(16)156, 81H(16)595). Isothiazol-3-one 1-oxide and the corresponding 1,1-dioxide give normal adducts with cyclopentadiene and anthracene (80MI41700), and saccharin forms simple 1 1 or 1 2 adducts with dimethyl acetylenedicarboxylate (72IJC(B)881). [Pg.152]

Methylene thiirane is obtained by thermolysis of several spirothiirane derivatives which are formally Diels-Alder adducts of methylenethiirane and cyclopentadiene or anthracene <78JA7436). They were prepared via lithio-2-(methylthio)-l,3-oxazolines (c/. Scheme 121). A novel synthesis of the allene episulfide derivatives, 2-isopropylidene-3,3- dimethylthiirane (good yield) or its 5-oxide (poor yield), involves irradiation of 2,2,3,3-tetramethyl-cyclopropanethione or its 5-oxide (81AG293). Substituents on the thiirane ring may be modified to give new thiiranes (Section 5.06.3.9). The synthesis of thiirane 1-oxides and thiirane 1,1-dioxides by oxidation is discussed in Section 5.06.3.3.8 and the synthesis of 5-alkylthiiranium salts by alkylation of thiiranes is discussed in Section 5.06.3.3.4. Thiirene 1-oxides and 1,1-dioxides may be obtained by dehydrohalogenation of 2-halothiirane 1-oxides and 1,1-dioxides (Section 5.06.4.1.2). [Pg.182]

Dehydrogenation processes in particular have been studied, with conversions in most cases well beyond thermodynamic equihbrium Ethane to ethylene, propane to propylene, water-gas shirt reaction CO -I- H9O CO9 + H9, ethylbenzene to styrene, cyclohexane to benzene, and others. Some hydrogenations and oxidations also show improvement in yields in the presence of catalytic membranes, although it is not obvious why the yields should be better since no separation is involved hydrogenation of nitrobenzene to aniline, of cyclopentadiene to cyclopentene, of furfural to furfuryl alcohol, and so on oxidation of ethylene to acetaldehyde, of methanol to formaldehyde, and so on. [Pg.2098]

Tropolone has been made from 1,2-cycloheptanedione by bromination and reduction, and by reaction with A -bromosuccinimide from cyolo-heptanone by bromination, hydrolysis, and reduction from diethyl pimelate by acyloin condensation and bromination from cyclo-heptatriene by permanganate oxidation from 3,5-dihydroxybenzoic acid by a multistep synthesis from 2,3-dimethoxybenzoic acid by a multistep synthesis from tropone by chlorination and hydrolysis, by amination with hydrazine and hydrolysis, or by photooxidation followed by reduction with thiourea from cyclopentadiene and tetra-fluoroethylene and from cyclopentadiene and dichloroketene. - ... [Pg.120]

Metal-vapor synthesis also prepares metallaboranes and metallacarboranes with oxidation of the metal. Thermally generated Ni, Co and Fe atoms react with the nido-carborane 2,6-C2B7H, and either cyclopentadiene, toluene, mesitylene, or... [Pg.95]

In contrast to other organothallium(I) compounds, cyclopentadienyl-thallium(I) is a remarkably stable compound. Samples can be stored in sealed bottles for months without appreciable decomposition occurring it is unaffected by water and dilute alkali and it is only slowly oxidized by air at room temperature. Cyclopentadienyltballium(I) was first prepared by Meister in 1956 by addition of freshly distilled cyclopentadiene to a suspension of thallium(I) sulfate in dilute potassium hydroxide solution 101, 102). A number of variations of this procedure have been described (5, 25, 34, 56), and the compound has been made in other ways 35, 56,110, 164), but Meister s preparation, in which the yield of crude product is greater than 90%, remains the method of choice. Purification of crude cyclopenta-dienylthallium(I) is best accomplished by vacuum sublimation, and purity of samples can readily be assessed by gas-liquid chromatography on silicone oil at 170° C using hydrogen as carrier gas (7). [Pg.149]

Photooxidation of Dienes Investigated in Micro Reactors Cas/liquid reaction 24 [CL 24] Oxidation of cyclopentadiene by singlet oxygen to 2-cyclopentene-1,4-diol... [Pg.644]

GL 24] [R 1] [P 26] The feasibility of safely carrying out the oxidation of cyclopentadiene by singlet oxygen to 2-cyclopentene-l, 4-diol was demonstrated [40]. The explosive intermediate endoperoxide was generated and without isolation used onsite for a subsequent hydration reaction. By reduction with thiourea the pharmaceutically important product 2-cyclopentene-l,4-diol was so obtained. [Pg.645]

Sulphines may react as dienophiles with 1,3-dienes with the formation of cyclic sulphoxides. Unstable 2,2-dichloro-5,6-dihydro-2ff-thiin-l-oxide 191 was formed in an exothermic reaction between 173aandcyclopentadieneat — 40 (equation 101). The simplest, parent sulphine, CH2 = S = O, prepared in situ by treatment of a-trimethylsilylmethanesulphinyl chloride with cesium fluoride, reacts with cyclopentadiene to give bicyclic, unsaturated sulphoxide 192 as a mixture of two diastereoisomers in a 9 1 ratio (equation 102). On the other hand, a,j8-unsaturated sulphine 193 (generated by thermolysis of 2-benzylidene-l-thiotetralone dimer S-oxide) in boiling toluene behaves as a 1,3-diene and was trapped by norborene forming sulphoxide 194 in 78% yield ° (equation 103). [Pg.277]

We developed a convenient synthesis of 3-cyclopentenyl hydroperoxide via hydro-boration and autoxidation of cyclopentadiene, and bromination proceeded smoothly to afford 32 40). Ring closure with silver trifluoroacetate (Eq. 26) afforded a 5-bromo-2,3-dioxabicyclo[2.2.1]heptane 34 (6%) and a 5-trifluoroacetoxy-2,3-dioxabicyclo-[2.2.1]heptane 35 (14%), and it was shown independently that 34 is rapidly converted into 35 by reaction with Ag02CCF3. To avoid the trifluoroacetate bromide substitution that accompanies and competes with the dioxabicyclization, 32 was treated with silver oxide and this slowly yielded an isomeric 5-bromo-peroxide 33 (42 %) (Eq. 26). [Pg.140]


See other pages where Oxides cyclopentadiene is mentioned: [Pg.189]    [Pg.2070]    [Pg.189]    [Pg.2070]    [Pg.102]    [Pg.210]    [Pg.210]    [Pg.275]    [Pg.276]    [Pg.183]    [Pg.182]    [Pg.184]    [Pg.157]    [Pg.160]    [Pg.469]    [Pg.469]    [Pg.134]    [Pg.820]    [Pg.264]    [Pg.953]    [Pg.76]    [Pg.47]    [Pg.277]    [Pg.91]    [Pg.257]    [Pg.1511]    [Pg.214]    [Pg.145]    [Pg.645]    [Pg.78]    [Pg.194]    [Pg.54]    [Pg.56]    [Pg.57]    [Pg.1587]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.6 ]

See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.6 , Pg.11 ]




SEARCH



1.3- Cyclopentadiene oxidative dimerization

Cyclopentadiene anodic oxidation

Cyclopentadiene, oxidative

Cyclopentadiene, oxidative cycloaddition reaction with

© 2024 chempedia.info