Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide, decomposition rate

The introduction of electron donors or acceptors can modify oxidizer decomposition rates. [Pg.36]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

If a self-sustained oxidation is carried out under limiting rate conditions, the hydroperoxide provides the new radicals to the system (by reaction 4 or analogues) and is maintained at a low concentration (decomposition rate = generation rate). For these circumstances, the rate equation 9 holds, where n = average number of initiating radicals produced (by any means) per molecule of ROOH decomposed and / = fraction of RH consumed which disappears by ROO attack (25). [Pg.335]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Thermal decomposition of spent acids, eg, sulfuric acid, is required as an intermediate step at temperatures sufficientiy high to completely consume the organic contaminants by combustion temperatures above 1000°C are required. Concentrated acid can be made from the sulfur oxides. Spent acid is sprayed into a vertical combustion chamber, where the energy required to heat and vaporize the feed and support these endothermic reactions is suppHed by complete combustion of fuel oil plus added sulfur, if further acid production is desired. High feed rates of up to 30 t/d of uniform spent acid droplets are attained with a single rotary atomizer and decomposition rates of ca 400 t/d are possible (98). [Pg.525]

Thermally induced homolytic decomposition of peroxides and hydroperoxides to free radicals (eqs. 2—4) increases the rate of oxidation. Decomposition to nonradical species removes hydroperoxides as potential sources of oxidation initiators. Most peroxide decomposers are derived from divalent sulfur and trivalent phosphoms. [Pg.227]

Without the direct pathway contribution, this equation may either yield an increasing or decreasing current transient, depending on the value of A ox/ dec- If this ratio is larger than 4, i.e., if methanol decomposition is slow compared with CO oxidation, then the current is predicted to increase with time. Experimentally, this simation has been observed for a low methanol concentration and an almost perfect Pt(l 11) electrode [Housmans and Koper, 2003], which both lead to a low methanol decomposition rate. Typically, however, current transients decrease with time, suggesting that the rate... [Pg.190]

Overall, we demonstrated electrode potential- and time-dependent properties of the atop CO adsorbate generated from the formic acid decomposition process at three potentials, and addressed the issues of formic acid reactivity and poisoning [Samjeske and Osawa, 2005 Chen et al., 2003,2006]. There is also a consistency with the previous kinetic data obtained by electrochemical methods the maximum in formic acid decomposition rates was obtained at —0.025 V vs. Ag/AgCl or 0.25 V vs. RHE (cf. Fig. 12.7 in [Lu et al., 1999]). However, the exact path towards the CO formation is not clear, as the main reaction is the oxidation of the HCOOH molecule ... [Pg.393]

Increase the oxidation rate of polymers, e.g. metal ions which increase the hydroperoxide decomposition rate. Photodegradation and thermal degradation are enhanced by transition metal ion containing pro-oxidants, such as iron dithiocarbamate (as opposed to nickel dithiocarba-mate, which acts as a photo-antioxidant). [Pg.783]

Therefore, it is apparent that the efficiency of suppression of the oxidative decomposition at the given G sites in dpflG-containing duplex increased upon increasing the rate of hole transfer to dphG. These remarkable observations could be rationalized by assuming an annihilation process of the dphG... [Pg.194]

Copper metal surface area was determined by nitrous oxide decomposition. A sample of catalyst (0.2 g) was reduced by heating to 563 K under a flow of 10 % H2/N2 (50 cm min"1) at a heating rate of 3 deg.min 1. The catalyst was then held at this temperature for 1 h before the gas flow was switched to helium. After 0.5 h the catalyst was cooled in to 333 K and a flow of 5 %N20/He (50 cm3mirr ) passed over the sample for 0.25 h to surface oxidise the copper. At the end of this period the flow was switched to 10 % H2/N2 (50 entitlin 1) and the sample heated at a heating rate of 3 deg.min"1. The hydrogen up-take was quantified, from this a... [Pg.85]

ADCA is activated by zinc oxide, zinc stearate (strongly) and urea (slowly). Barium stearate, calcium stearate and triethanolamine, when added at 10 phr, moderately activate gas evolution from ADCA. They do not have very much effect on decomposition rate when the cure temperature is at 170 °C, but a marked effect above 180 °C. The rate of decomposition of ADCA is significantly influenced by the particle size of the additive. Effective dispersion and heat transfer through the particle can be a means of controlling the cell quality and the manufacturing method for the product. The correct particle size is selected to achieve the optimum balance between cure and cell development. [Pg.138]

The dependence of relative rates in radical addition reactions on the nucleophilicity of the attacking radical has also been demonstrated by Minisci and coworkers (Table 7)17. The evaluation of relative rate constants was in this case based on the product analysis in reactions, in which substituted alkyl radicals were first generated by oxidative decomposition of diacyl peroxides, then added to a mixture of two alkenes, one of them the diene. The final products were obtained by oxidation of the intermediate allyl radicals to cations which were trapped with methanol. The data for the acrylonitrile-butadiene... [Pg.624]

While the rate of decomposition in air was more rapid than in nitrogen, the kinetics of oxidative decomposition cannot be estimated reliably by isothermal weight loss because ofthe possibility of competing oxidative weight gain process. For this reason the kinetics were not estimated from the available data... [Pg.341]

However, it is known, that in homolytical processes certaine influence on reaction rate has also so-called "cage effect", which is described by density of medium cohesion energy. That was confirmed by generalization of data concerning to influence of solvents upon decomposition rate of benzoyl peroxide [2] or oxidizing processes [3, 4], That is why the data analysis from work [1] is seemed as expedient by means of five parameter equation ... [Pg.81]


See other pages where Oxide, decomposition rate is mentioned: [Pg.291]    [Pg.291]    [Pg.472]    [Pg.227]    [Pg.1500]    [Pg.655]    [Pg.72]    [Pg.48]    [Pg.147]    [Pg.204]    [Pg.216]    [Pg.370]    [Pg.168]    [Pg.293]    [Pg.357]    [Pg.456]    [Pg.191]    [Pg.192]    [Pg.194]    [Pg.245]    [Pg.28]    [Pg.265]    [Pg.9]    [Pg.969]    [Pg.170]    [Pg.66]    [Pg.149]    [Pg.328]    [Pg.192]    [Pg.234]    [Pg.236]    [Pg.33]    [Pg.452]    [Pg.674]    [Pg.313]    [Pg.373]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Decomposition oxidant

Decomposition rate

Nitrous oxide decomposition rate

Oxidation decomposition

Oxidative decomposition

Oxides, decompositions

© 2024 chempedia.info