Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative desulfurization oxidant

Aryl and alkyl hydroxylations, epoxide formation, oxidative dealkylation of heteroatoms, reduction, dehalogenation, desulfuration, deamination, aryl N-oxygenation, oxidation of sulfur Oxidation of nucleophilic nitrogen and sulfur, oxidative desulfurization Oxidation of aromatic hydrocarbons, phenols, amines, and sulfides oxidative dealkylation, reduction of N-oxides Alcohol oxidation reduction of ketones Oxidative deamination... [Pg.343]

De Filippis, P. and Scarsella, M. Oxidative desulfurization Oxidation reactivity of sulfur compounds in different organic matrixes. Energy Fuels, 2003, 17, 1452. [Pg.309]

Desulfurization will become mandatory when oxidizing catalysts are installed on the exhaust systems of diesel engines. At high temperatures this catalyst accelerates the oxidation of SO2 to SO3 and causes an increase in the weight of particulate emissions if the diesel fuel has not been desulfurized. As an illustrative example, Figure 5.22 shows that starting from a catalyst temperature of 400°C, the quantity of particulates increases very rapidly with the sulfur content. [Pg.255]

The problem of the synthesis of highly substituted olefins from ketones according to this principle was solved by D.H.R. Barton. The ketones are first connected to azines by hydrazine and secondly treated with hydrogen sulfide to yield 1,3,4-thiadiazolidines. In this heterocycle the substituents of the prospective olefin are too far from each other to produce problems. Mild oxidation of the hydrazine nitrogens produces d -l,3,4-thiadiazolines. The decisive step of carbon-carbon bond formation is achieved in a thermal reaction a nitrogen molecule is cleaved off and the biradical formed recombines immediately since its two reactive centers are hold together by the sulfur atom. The thiirane (episulfide) can be finally desulfurized by phosphines or phosphites, and the desired olefin is formed. With very large substituents the 1,3,4-thiadiazolidines do not form with hydrazine. In such cases, however, direct thiadiazoline formation from thiones and diazo compounds is often possible, or a thermal reaction between alkylideneazinophosphoranes and thiones may be successful (D.H.R. Barton, 1972, 1974, 1975). [Pg.35]

The conversion of CO to CO2 can be conducted in two different ways. In the first, gases leaving the gas scmbber are heated to 260°C and passed over a cobalt—molybdenum catalyst. These catalysts typically contain 3—4% cobalt(II) oxide [1307-96-6] CoO 13—15% molybdenum oxide [1313-27-5] MoO and 76—80% alumina, JSifDy and are offered as 3-mm extmsions, SV about 1000 h . On these catalysts any COS and CS2 are converted to H2S. Operating temperatures are 260—450°C. The gases leaving this shift converter are then scmbbed with a solvent as in the desulfurization step. After the first removal of the acid gases, a second shift step reduces the CO content in the gas to 0.25—0.4%, on a dry gas basis. The catalyst for this step is usually Cu—Zn, which may be protected by a layer of ZnO. [Pg.423]

Ma.nufa.cture. Several nickel oxides are manufactured commercially. A sintered form of green nickel oxide is made by smelting a purified nickel matte at 1000°C (30) a powder form is made by the desulfurization of nickel matte. Black nickel oxide is made by the calcination of nickel carbonate at 600°C (31). The carbonate results from an extraction process whereby pure nickel metal powder is oxidized with air in the presence of ammonia (qv) and carbon dioxide (qv) to hexaamminenickel(TT) carbonate [67806-76-2], [Ni(NH3)3]C03 (32). Nickel oxides also ate made by the calcination of nickel carbonate or nickel nitrate that were made from a pure form of nickel. A high purity, green nickel oxide is made by firing a mixture of nickel powder and water in air (25). [Pg.9]

The partial-oxidation process differs only in the initial stages before the water gas shift converter. Because it is a noncatalyzed process, desulfurization can be carried out further downstream. The proportions of a mixture of heavy oil or coal, etc, O2, and steam, at very high temperature, are so adjusted that the exit gases contain a substantial proportion of H2 and carbon monoxide. [Pg.83]

Because relatively mild oxidizing agents react with phosphines, the latter are convenient deoxidizers (88) or desulfurizers (89) ... [Pg.380]

Ladle metallurgy, the treatment of Hquid steel in the ladle, is a field in which several new processes, or new combinations of old processes, continue to be developed (19,20). The objectives often include one or more of the following on a given heat more efficient methods for alloy additions and control of final chemistry improved temperature and composition homogenisation inclusion flotation desulfurization and dephosphorization sulfide and oxide shape control and vacuum degassing, especially for hydrogen and carbon monoxide to make interstitial-free (IF) steels. Electric arcs are normally used to raise the temperature of the Hquid metal (ladle arc furnace). [Pg.380]

Minor and potential new uses for ammonium thiosulfate include flue-gas desulfurization (76,77), removal of nitrogen oxides and sulfur dioxide from flue gases (78,79), converting sulfur ia hydrocarbons to a water-soluble form (80), and converting cellulose to hydrocarbons (81,82) (see Sulfur REMOVAL AND RECOVERY). [Pg.31]

The uppermost hearth serves to dry the damp ore in the hot (ca 500°C) gases exiting the top of the toaster. These gases may contain up to 15% of the total cmde oxide and up to 6% sulfur dioxide, high enough to be fed to a sulfuric acid plant. In some pyrometaHurgical operations, desulfurization is continued in a sintering step. [Pg.399]

Ring contraction of 2-thiocephems has also been examined as a route to penems. Desulfurization of (82, n = 0) using triphenylphosphine gave mixtures of 5(R)- and 5(5)-penems (121). The stereochemical problem was neatiy overcome by regioselective oxidation to the thiosulfonate (82, n = 2) which underwent stereospecific thermal extmsion of sulfur dioxide (122) to give the S(R)-penem (83). [Pg.13]

Exhaust emissions of CO, unbumed hydrocarbons, and nitrogen oxides reflect combustion conditions rather than fuel properties. The only fuel component that degrades exhaust is sulfur the SO2 concentrations ia emissions are directly proportional to the content of bound sulfur ia the fuel. Sulfur concentrations ia fuel are determined by cmde type and desulfurization processes. Specifications for aircraft fuels impose limits of 3000 —4000 ppm total sulfur but the average is half of these values. Sulfur content ia heavier fuels is determined by legal limits on stack emissions. [Pg.414]

Oxidative Desulfurization Process. Oxidative desulfurization of finely ground coal, originally developed by The Chemical Constmction Co. (27,28), is achieved by converting the sulfur to a water-soluble form with air oxidation at 150—220°C under 1.5—10.3 MPa (220—1500 psi) pressure. More than 95% of the pyritic sulfur and up to 40% of the organic sulfur can be removed by this process. [Pg.257]

Cobalt in Catalysis. Over 40% of the cobalt in nonmetaUic appHcations is used in catalysis. About 80% of those catalysts are employed in three areas (/) hydrotreating/desulfurization in combination with molybdenum for the oil and gas industry (see Sulfurremoval and recovery) (2) homogeneous catalysts used in the production of terphthaUc acid or dimethylterphthalate (see Phthalic acid and otherbenzene polycarboxylic acids) and (i) the high pressure oxo process for the production of aldehydes (qv) and alcohols (see Alcohols, higher aliphatic Alcohols, polyhydric). There are also several smaller scale uses of cobalt as oxidation and polymerization catalysts (44—46). [Pg.380]

Pyrimidine, I-alkyl-2-methyltetrahydro-C-thioacylation, 4, 807 Pyrimidine, 4-alkylsulfinyl-nucleophilie displaeement reaetions, 3, 97 Pyrimidine, 6-alkylsulfinyl-nucleophilic displacement reactions, 3, 97 Pyrimidine, 2-alkylsulfonyl-nueleophilie displaeement reactions, 3, 97 Pyrimidine, 4-alkylsulfonyl-nucleophilic displacement reactions, 3, 97 Pyrimidine, 6-alkylsulfonyl-nucleophilie displaeement reactions, 3, 97 Pyrimidine, alkylthio-dealkylation, 3, 95 desulfurization, 3, 95 oxidation, 3, 96 synthesis, 3, 135, 136 Pyrimidine, 2-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Prineipal Synthesis, 3, 136 Pyrimidine, 4-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Pyrimidine, 6-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Pyrimidine, 4-allenyloxy-rearrangement, 3, 93 Pyrimidine, 4-allyloxy-2-phenyl-rearrangement, 3, 93 Pyrimidine, 4-allynyloxy-rearrangement, 3, 93 Pyrimidine, 4-anilino-2,5,6-trifluoro-NMR, 3, 63 Pyrimidine, 2-aryl-pyrroleaeetic aeid from, 4, 152 Pyrimidine, arylazo-synthesis, 3, 131 Pyrimidine, 4-arylazo-reduetion, 3, 88... [Pg.803]

Pyrimidine-4(3H)-thione, 6-methoxy-5-nitro-reduction, 3, 88 Pyrimidinethiones acidic pK, 3, 60 S-acylation, 3, 95 N-alkylated synthesis, 3, 139 aminolysis, 3, 94 desulfurization, 3, 93 electrophilic reactions, 3, 69 hydrolysis, 3, 94 oxidation, 3, 94, 138 pyrimidinone synthesis from, 3, 133 reactions... [Pg.808]


See other pages where Oxidative desulfurization oxidant is mentioned: [Pg.347]    [Pg.133]    [Pg.411]    [Pg.422]    [Pg.438]    [Pg.269]    [Pg.527]    [Pg.216]    [Pg.399]    [Pg.402]    [Pg.369]    [Pg.489]    [Pg.258]    [Pg.530]    [Pg.93]    [Pg.94]    [Pg.122]    [Pg.124]    [Pg.127]    [Pg.300]    [Pg.265]    [Pg.152]    [Pg.140]    [Pg.152]    [Pg.153]    [Pg.155]    [Pg.156]    [Pg.170]    [Pg.262]    [Pg.289]    [Pg.601]    [Pg.617]    [Pg.684]    [Pg.742]   


SEARCH



Desulfurization oxidative

Oxidative desulfuration

© 2024 chempedia.info