Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation-reduction reaction rate

These electrostatic effects may significantly modify the chemistry of the solution that remains when freezing is complete under certain circumstances, ([58, 59] differential incorporation of ions by the ice lattice may be responsible for the observation that some oxidation-reduction reaction rates are enhanced by several orders of magnitude during freezing ([60]). [Pg.129]

Reduction of BaSO appears to begin about 900°C (15). The presence of iron or iron oxide can cataly2e the barium (9) and also strontium reduction reaction rates. However, iron impurity can also increase the acid-soluble content of the black ash (9). [Pg.478]

Oxidation—Reduction. Redox or oxidation—reduction reactions are often governed by the hard—soft base rule. For example, a metal in a low oxidation state (relatively soft) can be oxidized more easily if surrounded by hard ligands or a hard solvent. Metals tend toward hard-acid behavior on oxidation. Redox rates are often limited by substitution rates of the reactant so that direct electron transfer can occur (16). If substitution is very slow, an outer sphere or tunneling reaction may occur. One-electron transfers are normally favored over multielectron processes, especially when three or more species must aggregate prior to reaction. However, oxidative addition... [Pg.170]

There are also examples of induced complex formation, an essential step of which is always an oxidation-reduction reaction. Rich and Taube found that the rate of exchange between PtCl and Cl was considerably increased by addition of cerium(rV). In the presence of this oxidizing agent a labile complex of Pt(III) is formed, the chloride of which is easily exchangeable. Exchange of platinum between PtCl and PtClg is similarly rapid via the intermediate labile PtCIs complex formed by cerium(IV). [Pg.511]

Marcus RA (1963) On the theory of oxidation-reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants. J Phys Chem 67 853-857... [Pg.260]

Spiro [27] has derived quantitative expressions for the catalytic effect of electron conducting catalysts on oxidation-reduction reactions in solution in which the catalyst assumes the Emp imposed on it by the interacting redox couples. When both partial reaction polarization curves in the region of Emp exhibit Tafel type kinetics, he determined that the catalytic rate of reaction will be proportional to the concentrations of the two reactants raised to fractional powers in many simple cases, the power is one. On the other hand, if the polarization curve of one of the reactants shows diffusion-controlled kinetics, the catalytic rate of reaction will be proportional to the concentration of that reactant alone. Electroless metal deposition systems, at least those that appear to obey the MPT model, may be considered to be a special case of the general class of heterogeneously catalyzed reactions treated by Spiro. [Pg.230]

Since anaerobic azo dye reduction is an oxidation-reduction reaction, a liable electron donor is essential to achieve effective color removal rates. It is known that most of the bond reductions occurred during active bacterial growth [48], Therefore, anaerobic azo dye reduction is extremely depended on the type of primary electron donor. It was reported that ethanol, glucose, H2/CO2, and formate are effective electron donors contrarily, acetate and other volatile fatty acids are normally known as poor electron donors [42, 49, 50]. So far, because of the substrate itself or the microorganisms involved, with some primary substrates better color removal rates have been obtained, but with others no effective decolorization have been observed [31]. Electron donor concentration is also important to achieve... [Pg.66]

If kTkEr, then P is consumed as soon as it is formed and ICl reflects the rate of the oxidation-reduction reaction. [Pg.79]

The electrochemical rate of an oxidation/reduction reaction is expressed as ... [Pg.314]

Figure 10. Cyclic voltammetric response at the NPyeCME for the oxidation/ reduction reaction of benzyl alcohol (32 mM)/C10 in aqueous 4.1 mol NaOCl (A) and nonaqueous CH2CI2 (B) solutions at a scan rate of 50 mV/s. (C) Cartoon for the NPyeCME. Inset (A) corresponds to an enlarged version of the oxidation part without (a) and with (b) benzyl alcohol. In order to marntam the electrical conductivity, 0.1 M tetrabutylammonium bromide (TBAB) is added into the CH2CI2 solution. Figure 10. Cyclic voltammetric response at the NPyeCME for the oxidation/ reduction reaction of benzyl alcohol (32 mM)/C10 in aqueous 4.1 mol NaOCl (A) and nonaqueous CH2CI2 (B) solutions at a scan rate of 50 mV/s. (C) Cartoon for the NPyeCME. Inset (A) corresponds to an enlarged version of the oxidation part without (a) and with (b) benzyl alcohol. In order to marntam the electrical conductivity, 0.1 M tetrabutylammonium bromide (TBAB) is added into the CH2CI2 solution.
The catalytic effect of metal ions such as Mg2+ and Zn2+ on the reduction of carbonyl compounds has extensively been studied in connection with the involvement of metal ions in the oxidation-reduction reactions of nicotinamide coenzymes [144-149]. Acceleration effects of Mg2+ on hydride transfer from NADH model compounds to carbonyl compounds have been shown to be ascribed to the catalysis on the initial electron transfer process, which is the rate-determining step of the overall hydride transfer reactions [16,87,149]. The Mg2+ ion has also been shown to accelerate electron transfer from cis-dialkylcobalt(III) complexes to p-ben-zoquinone derivatives [150,151]. In this context, a remarkable catalytic effect of Mg2+ was also found on photoinduced electron transfer reactions from various electron donors to flavin analogs in 1984 [152], The Mg2+ (or Zn2+) ion forms complexes with a flavin analog la and 5-deazaflavins 2a-c with a 1 1 stoichiometry in dry MeCN at 298 K [153] ... [Pg.143]

Because of the bulk of comparable material available, it has been possible to use half-wave potentials for some types of linear free energy relationships that have not been used in connection with rate and equilibrium constants. For example, it has been shown (7, 777) that the effects of substituents on quinone rings on their reactivity towards oxidation-reduction reactions, can be approximately expressed by Hammett substituent constants a. The susceptibility of the reactivity of a cyclic system to substitution in various positions can be expressed quantitatively (7). The numbers on formulae XIII—XV give the reaction constants Qn, r for the given position (values in brackets only very approximate) ... [Pg.56]

In cyclic voltammetry, the potential applied to the working electrode is varied linearly (Fig. 2.1) between potentials Ex and E2, E2 being a potential more positive (for oxidation) or negative (for reduction) than the peak maximum observed for the oxidation/reduction reaction concerned. At E2, the voltage scan is reversed back to E3 or to another end potential value, E3. The application of this type of potential ramp can be done in a number of ways, varying the starting potential Eu the reverse potential E2, the end potential E3 and the scan rate. The latter is the rate that is applied to vary the potential as a function of time, commonly represented in Vs 1 or mVs"1. [Pg.43]

In an electrochemical cell, the oxidation reduction reactions initially proceed at a constant rate. Usually the reaction rate is appropriate for uniform conversion of metal ions to metal atoms at the cathode and even metal coating of an object to be plated. However, sometimes it is necessary to change the rate of metal atom deposit. This can only be accomplished in an electrolytic cell where an external voltage source controls metal atom deposit. [Pg.279]

These laws (determined by Michael Faraday over a half century before the discovery of the electron) can now be shown to be simple consequences of the electrical nature of matter. In any electrolysis, an oxidation must occur at the anode to supply the electrons that leave this electrode. Also, a reduction must occur at the cathode removing electrons coming into the system from an outside source (battery or other DC source). By the principle of continuity of current, electrons must be discharged at the cathode at exactly the same rate at which they are supplied to the anode. By definition of the equivalent mass for oxidation-reduction reactions, the number of equivalents of electrode reaction must be proportional to the amount of charge transported into or out of the electrolytic cell. Further, the number of equivalents is equal to the number of moles of electrons transported in the circuit. The Faraday constant (F) is equal to the charge of one mole of electrons, as shown in this equation ... [Pg.328]

The most detailed theoretical treatment of outer-sphere electron-transfer reactions has been given by Marcus71-75, who has derived the following expression for the rate constant for an oxidation-reduction reaction ... [Pg.17]

The oxidation rate depends not only on the gas composition and the temperature parameter, but also on the electric potential difference between the electronically conductive part of the anode electrode and the ionically conductive electrolyte. Defining the electric potential of the solid part of the anode electrode as zero potential, the reaction rate depends on the electric potential in the electrolyte, other hand, the reduction reaction rate depends on the electric potential difference at the cathode electrode, which is the difference between the given cell voltage, Uceii, and the electrolyte potential, equilibrium constants are determined by the... [Pg.56]

Like RT3D, BioRedox is a 3-D model that is capable of modeling multi-species reactive transport [70]. The public domain model can simulate coupled oxidation-reduction reactions between multiple electron acceptors and donors. Except for rate-limited sorption, it is capable of simulating all the reactions simulated by RT3D, and is more user-friendly, in that no modifications to source code are required to incorporate reaction packages [70]. [Pg.53]

One purpose of this paper is to examine the evidence that the rates of oxidation—reduction reactions are related to the conductivity of the medium separating the oxidant and reductant. This survey will then describe experiments now in progress to investigate systematically the nonadiabatic regime in oxidation—reduction reactions. First the relationship between what has loosely been referred to as the conductivity of the medium and the title term, nonadiabatic, should be defined. [Pg.130]

Pai et al. (1983) measured hole mobilities of a series of bis(diethylamino)-substituted triphenylmethane derivatives doped into a PC and poly(styrene) (PS). The mobilities varied by four orders of magnitude, while the field dependencies varied from linear to quadratic. In all materials, the field dependencies decreased with increasing temperature. The temperature dependencies were described by an Arrhenius relationship with activation energies that decrease with increasing field. Pai et al. described the transport process as a field-driven chain of oxidation-reduction reactions in which the rate of electron transfer is controlled by the molecular substituents of the hopping sites. [Pg.356]

The transfer of a single electron between two chemical entities is the simplest of oxidation-reduction processes, but it is of central importance in vast areas of chemistry. Electron transfer processes constitute the fundamental steps in biological utilization of oxygen, in electrical conductivity, in oxidation reduction reactions of organic and inorganic substrates, in many catalytic processes, in the transduction of the sun s energy by plants and by synthetic solar cells, and so on. The breadth and complexity of the subject is evident from the five volume handbook Electron Transfer in Chemistry (V. Balzani, Ed.), published in 2001. The most fimdamental principles that govern the efficiencies, the yields or the rates of electron-transfer processes are independent of the nature of the substrates. The properties of the substrates do dictate the conditions for apphcability of those fimdamental... [Pg.1177]


See other pages where Oxidation-reduction reaction rate is mentioned: [Pg.6]    [Pg.297]    [Pg.19]    [Pg.113]    [Pg.247]    [Pg.262]    [Pg.244]    [Pg.629]    [Pg.49]    [Pg.180]    [Pg.246]    [Pg.288]    [Pg.454]    [Pg.216]    [Pg.223]    [Pg.415]    [Pg.470]    [Pg.297]    [Pg.441]    [Pg.162]    [Pg.208]    [Pg.129]    [Pg.137]    [Pg.158]   
See also in sourсe #XX -- [ Pg.416 , Pg.418 , Pg.436 ]




SEARCH



Reaction oxidation-reduction

Reaction rates oxidations

Reduction rates

© 2024 chempedia.info