Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Induced-fit complexation

An interesting data structure, called flexibility tree, can be employed in the search for the docked complex structure and it allows to combine several flexibility techniques [95]. The data structure hierarchically encodes the flexibility of a protein in variables that allow several protein parts to experience different kinds of moves. Flexibility of domains may be described via normal mode or hinge motions, and side chains are allowed to explore rotameric states. Flexibility trees for protein and ligand are implemented in Flip Dock that provides a genetic algorithm to optimize the variables to gain an induced fit complex ]96]. [Pg.235]

Fig. 2. Principle mechanisms of formation of a receptor—substrate complex (a) Fischer s rigid "lock-and-key" model (b) "induced fit" model showing... Fig. 2. Principle mechanisms of formation of a receptor—substrate complex (a) Fischer s rigid "lock-and-key" model (b) "induced fit" model showing...
Later on12, Koshland proposed the induced fit model of the active site action that considers that during the formation of the enzyme-substrate complex, the enzyme can change its conformation so as to wrap the substrate like it happens when a hand (substrate) fits in a globe (enzyme). This flexing puts the active site and bonds in the substrate under strain, which weakens the bonds and helps to lower the activation energy for the catalyzed reaction. [Pg.329]

The use of the symbol E in 5.1 for the environment had a double objective. It stands there for general environments, and it also stands for the enzyme considered as a very specific environment to the chemical interconversion step [102, 172], In the theory discussed above catalysis is produced if the energy levels of the quantum precursor and successor states are shifted below the energy value corresponding to the same species in a reference surrounding medium. Both the catalytic environment E and the substrates S are molded into complementary surface states to form the complex between the active precursor complex Si and the enzyme structure adapted to it E-Si. In enzyme catalyzed reactions the special productive binding has been confussed with the possible mechanisms to attain it lock-key represents a static view while the induced fit concept... [Pg.332]

Wester, M.R., Johnson, E.F., Marques-Soares, C., Dijols, S., Dansette, P.M., Mansuy, D. and Stout, C.D. (2003) Structure of mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1 A resolution evidence for an induced fit model of substrate binding. Biochemistry, 42, 9335-9345. [Pg.263]

Figure 6. Enzymes act as recycling catalysts in biochemical reactions. A substrate molecule binds (reversible) to the active site of an enzyme, forming an enzyme substrate complex. Upon binding, a series of conformational changes is induced that strengthens the binding (corresponding to the induced fit model of Koshland [148]) and leads to the formation of an enzyme product complex. To complete the cycle, the product is released, allowing the enzyme to bind further substrate molecules. (Adapted from Ref. 1). See color insert. Figure 6. Enzymes act as recycling catalysts in biochemical reactions. A substrate molecule binds (reversible) to the active site of an enzyme, forming an enzyme substrate complex. Upon binding, a series of conformational changes is induced that strengthens the binding (corresponding to the induced fit model of Koshland [148]) and leads to the formation of an enzyme product complex. To complete the cycle, the product is released, allowing the enzyme to bind further substrate molecules. (Adapted from Ref. 1). See color insert.
One of the important consequences of studying catalysis by mutant enzymes in comparison with wild-type enzymes is the possibility of identifying residues involved in catalysis that are not apparent from crystal structure determinations. This has been usefully applied (Fersht et al., 1988) to the tyrosine activation step in tyrosine tRNA synthetase (47) and (49). The residues Lys-82, Arg-86, Lys-230 and Lys-233 were replaced by alanine. Each mutation was studied in turn, and comparison with the wild-type enzyme revealed that each mutant was substantially less effective in catalysing formation of tyrosyl adenylate. Kinetic studies showed that these residues interact with the transition state for formation of tyrosyl adenylate and pyrophosphate from tyrosine and ATP and have relatively minor effects on the binding of tyrosine and tyrosyl adenylate. However, the crystal structures of the tyrosine-enzyme complex (Brick and Blow, 1987) and tyrosyl adenylate complex (Rubin and Blow, 1981) show that the residues Lys-82 and Arg-86 are on one side of the substrate-binding site and Lys-230 and Lys-233 are on the opposite side. It would be concluded from the crystal structures that not all four residues could be simultaneously involved in the catalytic process. Movement of one pair of residues close to the substrate moves the other pair of residues away. It is therefore concluded from the kinetic effects observed for the mutants that, in the wild-type enzyme, formation of the transition state for the reaction involves a conformational change to a structure which differs from the enzyme structure in the complex with tyrosine or tyrosine adenylate. The induced fit to the transition-state structure must allow interaction with all four residues simultaneously. [Pg.366]

The topologically defined region(s) on an enzyme responsible for the binding of substrate(s), coenzymes, metal ions, and protons that directly participate in the chemical transformation catalyzed by an enzyme, ribo-zyme, or catalytic antibody. Active sites need not be part of the same protein subunit, and covalently bound intermediates may interact with several regions on different subunits of a multisubunit enzyme complex. See Lambda (A) Isomers of Metal Ion-Nucleotide Complexes Lock and Key Model of Enzyme Action Low-Barrier Hydrogen Bonds Role in Catalysis Yaga-Ozav /a Plot Yonetani-Theorell Plot Induced-Fit Model Allosteric Interaction... [Pg.27]

ISOTOPE TRAPPING STICKY SUBSTRATES Substrate-induced conformational change, INDUCED FIT MODEL SUBSTRATE INHIBITION ABORTIVE COMPLEX FORMATION LACTATE DEHYDROGENASE LEE-WILSON EQUATION... [Pg.782]


See other pages where Induced-fit complexation is mentioned: [Pg.12]    [Pg.94]    [Pg.107]    [Pg.231]    [Pg.94]    [Pg.723]    [Pg.12]    [Pg.94]    [Pg.107]    [Pg.231]    [Pg.94]    [Pg.723]    [Pg.211]    [Pg.311]    [Pg.197]    [Pg.54]    [Pg.622]    [Pg.43]    [Pg.54]    [Pg.91]    [Pg.97]    [Pg.676]    [Pg.36]    [Pg.53]    [Pg.59]    [Pg.200]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.373]    [Pg.401]    [Pg.51]    [Pg.104]    [Pg.282]    [Pg.339]    [Pg.373]    [Pg.442]    [Pg.89]    [Pg.92]    [Pg.324]    [Pg.515]    [Pg.7]    [Pg.677]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Induced fit

Induced fitting

© 2024 chempedia.info