Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation intermetallics

Chemical vapor deposition (C VD) is a versatile process suitable for the manufacturing of coatings, powders, fibers, and monolithic components. With CVD, it is possible to produce most metals, many nonmetallic elements such as carbon and silicon as well as a large number of compounds including carbides, nitrides, oxides, intermetallics, and many others. This technology is now an essential factor in the manufacture of semiconductors and other electronic components, in the coating of tools, bearings, and other wear-resistant parts and in many optical, optoelectronic and corrosion applications. The market for CVD products in the U.S. and abroad is expected to reach several billions dollars by the end of the century. [Pg.25]

The catalysts were tested in isoprene, benzene and naphthalene hydrogenation reactions. The catalysts prepared by oxidation of the intermetallic at 703 K were found to be more active than those oxidized at room temperature. In isoprene hydrogenation the catalyst based on mischmetal has a larger activity than the other alloys and is comparable to the catalysts prepared by other routes. In benzene hydrogenation the Ni and Ce based catalysts prepared by coprecipitation were found the most active. In naphthalene hydrogenation the fully oxidized intermetallics are four times more active than the partially oxidized ones. In addition they are independent of hydrogen pressure and selective into decaline formation. [Pg.19]

The long-term thermal stability between 350 and 450°C for a composite Pd porous stainless steel membrane with an oxide intermetallic diffusion barrier layer is shown in Fig. 13.7. As shown in the figure, the membrane showed no sign of deterioration after over 6,000 h of continuous testing. [Pg.250]

In die sections that follow, we briefly discuss the synthesis of inorganic solids by various methods with several examples, paying attention to the chemical routes. While oxide materials occupy a great part of the monograph, other classes of materials such as chalcogenides, carbides, fluorides and nitrides are also discussed. Superconducting oxides, intermetallics, porous materials and intergrowlh structures have been discussed in separate sections. We have added a new section on nanomaterials. [Pg.4]

Pure metals and metal compounds (metal oxides, intermetallic compounds) which are capable of forming alloys with lithium constitute another category of electrode materials versus the insertion materials seen previously. They are used for the negative electrode in lithium-ion batteries because their redox potential versus lithium is less than 2 V. They are cited in the following four sections ... [Pg.123]

Platinum—Iridium. There are two distinct forms of 70/30 wt % platinum—iridium coatings. The first, prepared as prescribed in British patents (3—5), consists of platinum and iridium metal. X-ray diffraction shows shifted Pt peaks and no oxide species. The iridium [7439-88-5] is thus present in its metallic form, either as a separate phase or as a platinum—iridium intermetallic. The surface morphology of a platinum—iridium metal coating shown in Figure 2 is cracked, but not in the regular networked pattern typical of the DSA oxide materials. [Pg.121]

The second form consists of Pt metal but the iridium is present as iridium dioxide. Iridium metal may or may not be present, depending on the baking temperature (14). Titanium dioxide is present in amounts of only a few weight percent. The analysis of these coatings suggests that the platinum metal acts as a binder for the iridium oxide, which in turn acts as the electrocatalyst for chlorine discharge (14). In the case of thermally deposited platinum—iridium metal coatings, these may actually form an intermetallic. Both the electrocatalytic properties and wear rates are expected to differ for these two forms of platinum—iridium-coated anodes. [Pg.121]

Whereas finely divided cobalt is pyrophoric, the metal in massive form is not readily attacked by air or water or temperatures below approximately 300°C. Above 300°C, cobalt is oxidized by air. Cobalt combines readily with the halogens to form haUdes and with most of the other nonmetals when heated or in the molten state. Although it does not combine direcdy with nitrogen, cobalt decomposes ammonia at elevated temperatures to form a nitride, and reacts with carbon monoxide above 225°C to form the carbide C02C. Cobalt forms intermetallic compounds with many metals, such as Al, Cr, Mo,... [Pg.371]

Sohd rocket propellants represent a very special case of a particulate composite ia which inorganic propellant particles, about 75% by volume, are bound ia an organic matrix such as polyurethane. An essential requirement is that the composite be uniform to promote a steady burning reaction (1). Further examples of particulate composites are those with metal matrices and iaclude cermets, which consist of ceramic particles ia a metal matrix, and dispersion hardened alloys, ia which the particles may be metal oxides or intermetallic compounds with smaller diameters and lower volume fractions than those ia cermets (1). The general nature of particulate reinforcement is such that the resulting composite material is macroscopicaHy isotropic. [Pg.4]

Type 315-This has a composition that provides a similar oxidation resistance to type 309 but has less liability to embrittlement due to sigma formation if used for long periods in the range of 425 to 815°C. (Sigma phase is the hard and brittle intermetallic compound FeCr formed in chromium rich alloys when used for long periods in the temperature range of 650 to 850°.)... [Pg.71]

In this chapter synthesis of zinc ferrites, intermetallic compounds, and metal-oxides. [Pg.179]

This chapter presents detailed and thorough studies of chemical synthesis in three quite different chemical systems zinc ferrite, intermetallic, and metal oxide. In addition to different reaction types (oxide-oxide, metal-metal, and metal oxide), the systems have quite different heats of reaction. The oxide-oxide system has no heat of reaction, while the intermetallic has a significant, but modest, heat of reaction. The metal oxide system has a very large heat of reaction. The various observations appear to be consistent with the proposed conceptual models involving configuration, activation, mixing, and heating required to describe the mechanisms of shock-induced solid state chemistry. [Pg.194]

The electrodeposition of Cr in acidic chloroaluminates was investigated in [24]. The authors report that the Cr content in the AlCr deposit can vary from 0 to 94 mol %, depending on the deposition parameters. The deposit consists both of Cr-rich and Al-rich solid solutions as well as intermetallic compounds. An interesting feature of these deposits is their high-temperature oxidation resistance, the layers seeming to withstand temperatures of up to 800 °C, so coatings with such an alloy could have interesting applications. [Pg.300]

The major types of interferences in ASV procedures are overlapping stripping peaks caused by a similarity in the oxidation potentials (e.g., of the Pb, Tl, Cd, Sn or Bi, Cu, Sb groups), the presence of surface-active organic compounds that adsorb on tlie mercury electrode and inhibit the metal deposition, and the formation of intermetallic compounds (e.g., Cu-Zn) which affects the peak size and position. Knowledge of these interferences can allow prevention through adequate attention to key operations. [Pg.79]

Only two processes for the manufacture of Be are of industrial importance (i). the thermal reduction of BeF2 using Mg, and (ii) the electrolysis of BeCl2 in a molten chloride electrolyte. Direct reduction of the oxide is ineffective because of its thermodynamic stability only Ca reduces BeO to the metal unfortunately, Ca cannot be used since it forms a stable intermetallic compound with Be, BejjCa. [Pg.363]

Several preparative methods do not use elemental mixtures. Group IIA-Pt intermetallic compounds have been prepared by reacting platinum metal with the group-IIA oxide under hydrogen or ammonia at 900-1200 C. Beryllium metal reacts with neptunium fluoride under vacuum at 1100-1200°C to form BC 3Np. [Pg.471]


See other pages where Oxidation intermetallics is mentioned: [Pg.90]    [Pg.90]    [Pg.992]    [Pg.90]    [Pg.90]    [Pg.992]    [Pg.254]    [Pg.270]    [Pg.131]    [Pg.137]    [Pg.7]    [Pg.15]    [Pg.202]    [Pg.126]    [Pg.48]    [Pg.390]    [Pg.75]    [Pg.227]    [Pg.47]    [Pg.131]    [Pg.279]    [Pg.410]    [Pg.180]    [Pg.224]    [Pg.389]    [Pg.282]    [Pg.808]    [Pg.910]    [Pg.961]    [Pg.1054]    [Pg.1333]    [Pg.302]    [Pg.467]    [Pg.512]    [Pg.514]    [Pg.213]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Formic acid oxidation intermetallics

Intermetallic compounds, oxidation

Oxidation of Intermetallics - Japanese Activity

Oxidation of Ti-AI intermetallic compounds

Oxide scale formation, intermetallics

© 2024 chempedia.info