Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation in catalysts

A strong reduction peak appears for catalyst B, caused by the reduction of cerium oxides. However, this peak does not appear for catalyst A. This result suggests that cerium oxide is present as a separate phase in catalysts B, whereas there is a strong interaction between Ce and Zr oxides in catalysts A. [Pg.911]

The above classification suggests that under properly chosen condition the subject of this chapter, i.e. metal ion-metal nanocluster ensemble sites (MIMNES) can be formed in most of the above types of catalysts. For instance, from bimetallic clusters of type (i) and (ii) MIMNES can be formed under conditions of mild oxidation. In catalysts type (iii) MIMNES should exist both under oxidative and reductive environment. In catalysts type (iv) any metal-support interaction with the involvement of non-reducible oxide can also be considered as MIMNES. The only requirement for the formation of MIMNES is the atomic closeness of the two types of sites. [Pg.4]

If both of FeO and Fe304 are present independently, then the molecular ratio of the main phase of FeO with minor phases of Fe304 will be 5 1, and the phase fraction will be 5/(5 + 1) = 0.83. This ratio is called as the molecular ratio or phase fraction (/) of iron oxides in catalysts respectively, which is attempted to replace the classical concept of atomic ratio (R) of Fe + to Fe + and to express the monism of the phase composition of iron oxides in precursor ° ... [Pg.220]

For the reduction of fused iron catalysts, the reduction temperature is lower than 570°C, regardless of iron oxide in catalysts is Fes04, FeO or their mixtures (of the Fe +/Fe + >0.5, Fe20s does not exist in this system), therefore they can be directly reduced to Fe. ... [Pg.387]

Alkali metals and alkaline earth metal oxides are commonly used as electron-type promoters in iron-melted catalyst. Experimental samples contain K2O, CaO, and other basic oxides. Therefore, the surface area measured by the selective chemisorption of CO2 at 195.2 K should be the total surface area of alkaline oxides in catalyst. [Pg.586]

Measures the reducibifity of oxides in catalyst samples in reducing atmospheres. [Pg.16]

CoAsS, are also used as sources. The ore is roasted and Co is precipitated as the hydroxide and then reduced to Co with carbon (hep below 417 - C, cep to m.p.). The metal is silvery white and readily polished. It dissolves in dilute acids and is slowly oxidized in air. Adsorbs hydrogen strongly. The main use of cobalt is in alloys. Cobalt compounds are used in paints and varnishes, catalysts. Cobalt is an essential element in the diet. World production 1976 32 000 tonnes metal. [Pg.104]

The sweetening operation consists of converting the mercaptans to disulfides by air oxidation in the presence of a catalyst in a caustic environment. [Pg.404]

Method 1. From ammonium chloroplatinate. Place 3 0 g. of ammonium chloroplatinate and 30 g. of A.R. sodium nitrate (1) in Pyrex beaker or porcelain casserole and heat gently at first until the rapid evolution of gas slackens, and then more strongly until a temperature of about 300° is reached. This operation occupies about 15 minutes, and there is no spattering. Maintain the fluid mass at 500-530° for 30 minutes, and allow the mixture to cool. Treat the sohd mass with 50 ml. of water. The brown precipitate of platinum oxide (PtOj.HjO) settles to the bottom. Wash it once or twice by decantation, filter througha hardened filter paper on a Gooch crucible, and wash on the filter until practically free from nitrates. Stop the washing process immediately the precipitate tends to become colloidal (2) traces of sodium nitrate do not affect the efficiency of the catalyst. Dry the oxide in a desiccator, and weigh out portions of the dried material as required. [Pg.470]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

The alkyl derivatives of thiazoles can be catalytically oxidized in the vapor phase at 250 to 400°C to afford the corresponding formyl derivatives (21). Molybdenum oxide, V2O5, and tin vanadate are used as catalysts either alone or with a support. The resulting carbonyl compounds can be selectively oxidized to the acids. [Pg.521]

The first process utilizes a bed of nickel catalyst which has been regenerated with hydrogen to reduce the nickel content to metallic form. The finely divided metal then reacts with impurities and retains them in the bed, probably as nickel oxide in the case of oxygen or as physisorbed compounds for other impurities. Periodically, the bed is regenerated at elevated temperature using hydrogen to restore the metallic content. The nickel process can be used and regenerated indefinitely. [Pg.88]

Oxidation. Acetaldehyde is readily oxidised with oxygen or air to acetic acid, acetic anhydride, and peracetic acid (see Acetic acid and derivatives). The principal product depends on the reaction conditions. Acetic acid [64-19-7] may be produced commercially by the Hquid-phase oxidation of acetaldehyde at 65°C using cobalt or manganese acetate dissolved in acetic acid as a catalyst (34). Liquid-phase oxidation in the presence of mixed acetates of copper and cobalt yields acetic anhydride [108-24-7] (35). Peroxyacetic acid or a perester is beheved to be the precursor in both syntheses. There are two commercial processes for the production of peracetic acid [79-21 -0]. Low temperature oxidation of acetaldehyde in the presence of metal salts, ultraviolet irradiation, or osone yields acetaldehyde monoperacetate, which can be decomposed to peracetic acid and acetaldehyde (36). Peracetic acid can also be formed directiy by Hquid-phase oxidation at 5—50°C with a cobalt salt catalyst (37) (see Peroxides and peroxy compounds). Nitric acid oxidation of acetaldehyde yields glyoxal [107-22-2] (38,39). Oxidations of /)-xylene to terephthaHc acid [100-21-0] and of ethanol to acetic acid are activated by acetaldehyde (40,41). [Pg.50]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

Processes rendered obsolete by the propylene ammoxidation process (51) include the ethylene cyanohydrin process (52—54) practiced commercially by American Cyanamid and Union Carbide in the United States and by I. G. Farben in Germany. The process involved the production of ethylene cyanohydrin by the base-cataly2ed addition of HCN to ethylene oxide in the liquid phase at about 60°C. A typical base catalyst used in this step was diethylamine. This was followed by liquid-phase or vapor-phase dehydration of the cyanohydrin. The Hquid-phase dehydration was performed at about 200°C using alkah metal or alkaline earth metal salts of organic acids, primarily formates and magnesium carbonate. Vapor-phase dehydration was accomphshed over alumina at about 250°C. [Pg.183]

The process can be operated in two modes co-fed and redox. The co-fed mode employs addition of O2 to the methane/natural gas feed and subsequent conversion over a metal oxide catalyst. The redox mode requires the oxidant to be from the lattice oxygen of a reducible metal oxide in the reactor bed. After methane oxidation has consumed nearly all the lattice oxygen, the reduced metal oxide is reoxidized using an air stream. Both methods have processing advantages and disadvantages. In all cases, however, the process is mn to maximize production of the more desired ethylene product. [Pg.86]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

Promoters are sometimes added to the vanadium phosphoms oxide (VPO) catalyst during synthesis (129,130) to increase its overall activity and/or selectivity. Promoters may be added during formation of the catalyst precursor (VOHPO O.5H2O), or impregnated onto the surface of the precursor before transformation into its activated phase. They ate thought to play a twofold stmctural role in the catalyst (130). First, promoters facilitate transformation of the catalyst precursor into the desired vanadium phosphoms oxide active phase, while decreasing the amount of nonselective VPO phases in the catalyst. The second role of promoters is to participate in formation of a soHd solution which controls the activity of the catalyst. [Pg.454]

Vanadium phosphoms oxide-based catalysts ate unstable in that they tend to lose phosphoms over time at reaction temperatures. Hot spots in fixed-bed reactors tend to accelerate this loss of phosphoms. This loss of phosphoms also produces a decrease in selectivity (70,136). Many steps have been taken, however, to aHeviate these problems and create an environment where the catalyst can operate at lower temperatures. For example, volatile organophosphoms compounds are fed to the reactor to mitigate the problem of phosphoms loss by the catalyst (137). The phosphoms feed also has the effect of controlling catalyst activity and thus improving catalyst selectivity in the reactor. The catalyst pack in the reactor may be stratified with an inert material (138,139). Stratification has the effect of reducing the extent of reaction pet unit volume and thus reducing the observed catalyst temperature (hot... [Pg.454]

Functional Monomers. Hydroxy functional methacrylates ate accessible by the reaction of methacryhc acid and ethylene oxide or ptopjiene oxide in the presence of chromium (61), iron (62), or ion-exchange catalysts (63). [Pg.248]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]


See other pages where Oxidation in catalysts is mentioned: [Pg.387]    [Pg.181]    [Pg.202]    [Pg.387]    [Pg.181]    [Pg.202]    [Pg.245]    [Pg.250]    [Pg.295]    [Pg.399]    [Pg.417]    [Pg.1859]    [Pg.2703]    [Pg.75]    [Pg.77]    [Pg.23]    [Pg.302]    [Pg.262]    [Pg.67]    [Pg.374]    [Pg.391]    [Pg.464]    [Pg.165]    [Pg.165]    [Pg.449]    [Pg.489]    [Pg.437]    [Pg.456]    [Pg.471]    [Pg.43]    [Pg.57]    [Pg.70]   
See also in sourсe #XX -- [ Pg.654 ]




SEARCH



A Catalytic Oxidation Tool. Fenton Chemistry in Solid Catalyst Synthesis

Assumptions in SO2 oxidation calculations no heat transfer to catalyst

Catalysts in ethanol oxidation

Catalysts in liquid phase oxidations

Catalysts platinum, in selective catalytic oxidation

Catalysts platinum, in selective catalytic oxidation of carbohydrates

Cesium in catalyst SO2 oxidation efficiency

Cesium in catalyst improves SO2 oxidation

Inadequate SO2 oxidized in first catalyst bed

Organometallic Complexes as Catalysts in Oxidation of C—H Compounds

Oxidation State of Gold in Active Catalysts

Oxidation Tools in the Synthesis of Catalysts and Related Functional Materials

Percent SO2 oxidized defined in after H2SO4 making catalyst beds

Porphyrin catalysts in oxidation reactions

Selective Oxidation in DSM Innovative Catalysts and Technologies

Spectroscopic Investigations of Novel Bimetal Catalysts for Preferential CO Oxidation in

© 2024 chempedia.info