Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation, copper-complex-catalyzed

Chapter 2 to 6 have introduced a variety of reactions such as asymmetric C-C bond formations (Chapters 2, 3, and 5), asymmetric oxidation reactions (Chapter 4), and asymmetric reduction reactions (Chapter 6). Such asymmetric reactions have been applied in several industrial processes, such as the asymmetric synthesis of l-DOPA, a drug for the treatment of Parkinson s disease, via Rh(DIPAMP)-catalyzed hydrogenation (Monsanto) the asymmetric synthesis of the cyclopropane component of cilastatin using a copper complex-catalyzed asymmetric cyclopropanation reaction (Sumitomo) and the industrial synthesis of menthol and citronellal through asymmetric isomerization of enamines and asymmetric hydrogenation reactions (Takasago). Now, the side chain of taxol can also be synthesized by several asymmetric approaches. [Pg.397]

Asymmetric ring-opening of saturated epoxides by organoctiprates has been studied, hut only low enantioselectivities f -c 1596 ee) have so far been obtained [49, 50]. Muller et al., for example, have reported that tlie reaction between cyclohexene oxide and MeMgBr, catalyzed by 1096 of a chiral Schiffhase copper complex, gave froiis-2-metliylcyclohexanol in 5096 yield and with 1096 ee [50]. [Pg.283]

Copper complexes were used as efficient catalysts for selective autoxidations of flavonols (HFLA) to the corresponding o-benzoyl salicylic acid (o-BSH) and CO in non-aqueous solvents and at elevated temperatures (124-128). The oxidative cleavage of the pyrazone ring is also catalyzed by some cobalt complexes (129-131). [Pg.442]

Polyphenol oxidase occurs within certain mammalian tissues as well as both lower (46,47) and higher (48-55) plants. In mammalian systems, the enzyme as tyrosinase (56) plays a significant role in melanin synthesis. The PPO complex of higher plants consists of a cresolase, a cate-cholase and a laccase. These copper metalloproteins catalyze the one and two electron oxidations of phenols to quinones at the expense of 02. Polyphenol oxidase also occurs in certain fungi where it is involved in the metabolism of certain tree-synthesized phenolic compounds that have been implicated in disease resistance, wound healing, and anti-nutrative modification of plant proteins to discourage herbivory (53,55). This protocol presents the Triton X-114-mediated solubilization of Vida faba chloroplast polyphenol oxidase as performed by Hutcheson and Buchanan (57). [Pg.186]

Figure 8. Lineweaver-Burk plots for oxidative coupling of DPP catalyzed by copper complexes of polymer ligand (I) with a =0.39 at 5 different temperatures. [CuCle]0 = 3.3mM N/Cu = 1 solvent 1,2-dichlorobenzene/methanol (13 2,... Figure 8. Lineweaver-Burk plots for oxidative coupling of DPP catalyzed by copper complexes of polymer ligand (I) with a =0.39 at 5 different temperatures. [CuCle]0 = 3.3mM N/Cu = 1 solvent 1,2-dichlorobenzene/methanol (13 2,...
In 2003, Velusamy and Punniyamurthy reported on a copper(II)-catalyzed C—H oxidation of alkylbenzenes and cyclohexane to the corresponding ketones with 30% hydrogen peroxide (Scheme 131). The reaction was catalyzed by the copper complex 192a depicted in Scheme 131 and yields were high in the case of alkylbenzenes (82-89%) whereas cyclohexanone was obtained with a low yield of 18%. Chemoselectivity was very high in every case neither aromatic oxidation nor oxidation at another position of the alkyl chain was observed. [Pg.518]

The most active system to date for the Cu-catalyzed oxidation of cyclohexane has only recently been reported. Reaction of triethanolamine with Cu(N03)2 in the presence of NaOH and different types of aromatic carboxy-lates, NaNs or NaBp4 yielded a family of multinuclear copper complexes with different structural characteristics, including 6 and 7. These systems showed... [Pg.34]

Organometallic reagents and catalysts continue to be of considerable importance, as illustrated in several procedures CAR-BENE GENERATION BY a-ELIMINATION WITH LITHIUM 2,2,6,6-TETRAMETHYLPIPERIDIDE l-ETHOXY-2-p-TOL-YLCYCLOPROPANE CATALYTIC OSMIUM TETROXIDE OXIDATION OF OLEFINS PREPARATION OF cis-1,2-CYCLOHEXANEDIOL COPPER CATALYZED ARYLA-TION OF /3-DICARBONYL COMPOUNDS 2-(l-ACETYL-2-OXOPROPYL)BENZOIC ACID and PHOSPHINE-NICKEL COMPLEX CATALYZED CROSS-COUPLING OF GRIG-NARD REAGENTS WITH ARYL AND ALKENYL HALIDES 1,2-DIBUTYLBENZENE. [Pg.233]

Bis(acetonitrile)chloronitropalladium(II)-Copper(II) chloride. (CH3CN)2PdClN02 and CuCl2 (1 4) when heated in t-butyl alcohol at 55° form a brown solid (1) of uncertain constitution. This Pd(II) complex catalyzes air oxidation of terminal alkenes to give aldehydes as the major product.1... [Pg.33]

Copper-catalyzed oxidations of phenols by dioxygen have attracted considerable interest owing to their relevance to enzymic tyrosinases (which transform phenols into o-quinones equation 24) and laccases (which dimerize or polymerize diphenols),67 and owing to their importance for the synthesis of specialty polymers [poly(phenylene oxides)]599 and fine chemicals (p-benzoquinones, muconic acid). A wide variety of oxidative transformations of phenols can be accomplished in the presence of copper complexes, depending on the reaction conditions, the phenol substituents and the copper catalyst.56... [Pg.391]

A mixed Ni(n) and Fe(n) form of Dowex 50W catalyzes the oxidation of cyclohexanone with molecular oxygen in the presence of benzaldehyde to e-caprolactone <2000JCM196>. Chiral nickel and copper complexes are shown to oxidize 2-arylcyclohexanones (Ar = Ph, 4-ClC6H4,4-MeOC6H4) in rather high yield with ee up to 69%, pivalaldehyde... [Pg.69]

Oxidative coupling polymerization provides great utility for the synthesis of high-performance polymers. Oxidative polymerization is also observed in vivo as important biosynthetic processes that, when catalyzed by metalloenzymes, proceed smoothly under an air atmosphere at room temperature. For example, lignin, which composes 30% of wood tissue, is produced by the oxidative polymerization of coniferyl alcohol catalyzed by laccase, an enzyme containing a copper complex as a reactive center. Tyrosine is an a-amino acid and is oxidatively polymerized by tyrosinase (Cu enzyme) to melanin, the black pigment in animals. These reactions proceed efficiently at room temperature in the presence of 02 by means of catalysis by metalloenzymes. Oxidative polymerization is observed in vivo as an important biosynthetic process that proceeds efficiently by oxidases. [Pg.535]

Kinetically slow steps in the formation of melanin from DOPA are the formation of dopaquinone from DOPA (step 1, kD), the reaction of dopachrome to dihydroxyindole (step 2), and the polymerization to form melanin (step 3, kM). Step 1 and step 2 proceed with about the same rate in the oxidative coupling polymerization catalyzed by tyrosinase. However, step 1 becomes remarkably slow when a macromolecule-metal complex is used as a catalyst. The copper complex in poly(l-vinylimidazole-co-vinylpyrrolidone) has been found [38] to act as an excellent catalyst and to exhibit the highest activity for melanin formation. The ratio of the rate constants ( m/ d) is approximately 3 (tyrosinase... [Pg.539]

The presumed catalytic cycle for this coupling is the following Once formed from 23, the highly coordinatively unsaturated 14-electron palladium(O) complex 24 participates in an oxidative addition reaction with the aryl or vinyl halide to give the 16-electron palladium(II) complex 25. A copper(I)-catalyzed alkynylation of 25 then furnishes an aryl- or vinylalkynyl palladium(II) complex 27. Finally, a terminating reductive elimination step reveals the coupling prduct 9 and regenerates the active palladium(O) catalyst 24. [Pg.92]

Mannam S, Alamsetti SK, Sekar G (2007) Aerobic, chemoselective oxidation of alcohols to carbonyl compounds catalyzed by a DABCO-copper complex under mild conditions. Adv Synth Catal 349(14-15) 2253-2258... [Pg.39]

Trace levels of soluble metal compounds, particularly copper, catalyze the oxidative degradation of gasoline by promoting the formation of gums and deposits. Metal deactivators overcome this problem by chelating the metal and rendering it inactive. The most widely used metal deactivator is N, N -disalicylidene-l,2-propanediamine, the copper complex of which is shown in Figure 3. [Pg.147]

Many amine-copper complexes, as well as a few amine complexes of other metals, and certain metal oxides have since been shown to induce similar reactions (17, 18, 22, 23, 30). This chapter is concerned largely with the mechanism of oxidative polymerization of phenols to linear polyarylene ethers most of the work reported has dealt with the copper-amine catalyzed oxidation of 2,6-xylenol, which is the basis for the commercial production of the polymer marketed under the trade name PPO, but the principal features of the reaction are common to the oxidative polymerization of other 2,6-disubstituted phenols. [Pg.678]


See other pages where Oxidation, copper-complex-catalyzed is mentioned: [Pg.45]    [Pg.268]    [Pg.706]    [Pg.584]    [Pg.149]    [Pg.228]    [Pg.836]    [Pg.111]    [Pg.113]    [Pg.33]    [Pg.50]    [Pg.43]    [Pg.153]    [Pg.132]    [Pg.45]    [Pg.837]    [Pg.12]    [Pg.580]    [Pg.654]    [Pg.90]    [Pg.37]    [Pg.47]    [Pg.536]    [Pg.108]    [Pg.55]    [Pg.362]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Copper complexes oxides

Copper oxidized

Oxidants copper

Oxidation copper complexes

Oxidative copper complexes

Oxidative coppering

Oxidic copper

© 2024 chempedia.info