Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation by bromate ions

Iodide ions are then oxidized by bromate ions since the solution has been acidified ... [Pg.370]

The oxygen-stable cobalt(II)-cdta complex (H4cdta = trans-cyclo-hexane-l,2-diaminetetra-acetic acid) is oxidized by bromate ions. The [H" ] dependence suggests a sequence of two steps ... [Pg.71]

Hydrophobic cerium(lV) reagents 308 7.1. Oxidations by bromate ions 344... [Pg.281]

The existence of chaotic oscillations has been documented in a variety of chemical systems. Some of tire earliest observations of chemical chaos have been on biochemical systems like tire peroxidase-oxidase reaction [12] and on tire well known Belousov-Zhabotinskii (BZ) [13] reaction. The BZ reaction is tire Ce-ion-catalyzed oxidation of citric or malonic acid by bromate ion. Early investigations of the BZ reaction used tire teclmiques of dynamical systems tlieory outlined above to document tire existence of chaos in tliis reaction. Apparent chaos in tire BZ reaction was found by Hudson et a] [14] aiid tire data were analysed by Tomita and Tsuda [15] using a return-map metliod. Chaos was confinned in tire BZ reaction carried out in a CSTR by Roux et a] [16, E7] and by Hudson and... [Pg.3060]

Cations forming insoluble chromates, such as those of silver, barium, mercury (I), mercury(II), and bismuth, do not interfere because the acidity is sufficiently high to prevent their precipitation. Bromide ion from the generation may be expected to form insoluble silver bromide, and so it is preferable to separate silver prior to the precipitation. Ammonium salts interfere, owing to competitive oxidation by bromate, and should be removed by treatment with sodium hydroxide. [Pg.454]

This subject has been reviewed by Noyes and Field,8 who give reference to the original formulation as well as a more explicit treatment. The presentation here will be given not in general terms but by means of one striking example, the oxidation of malonic acid by bromate ions catalyzed by cerium(IV). It is called the Belousov-Zhabotinsky (or BZ) reaction, after its discoverers.9 The stoichiometry of the reaction with excess malonic acid is... [Pg.190]

A synthetically useful reaction has been reported between alkaline bromine water and dimethyl sulphoxide118, the product being the perbromosulphone (equation 36). A kinetic study of the oxidation of dimethyl sulphoxide by bromate ions, catalysed by ruthenium(III) salts, has also been published but no yield data are available119. [Pg.981]

Belouzov-Zhabotinsky reaction [12, 13] This chemical reaction is a classical example of non-equilibrium thermodynamics, forming a nonlinear chemical oscillator [14]. Redox-active metal ions with more than one stable oxidation state (e.g., cerium, ruthenium) are reduced by an organic acid (e.g., malonic acid) and re-oxidized by bromate forming temporal or spatial patterns of metal ion concentration in either oxidation state. This is a self-organized structure, because the reaction is not dominated by equilibrium thermodynamic behavior. The reaction is far from equilibrium and remains so for a significant length of time. Finally,... [Pg.188]

An acidic bromate solution can oxidize various organic compounds and the reaction is catalyzed by species like cerous and manganous ions that can generate 1-equivalent oxidants with quite positive reduction potential. Belousov (1959) first observed oscillations in Celv]/[Cem] during Ce (III) catalysed oxidation of citric acid by bromate ion. Zhabotinskii made extensive studies of both temporal and spatial oscillations and also demonstrated that instead of Ce (III), weak 1- equivalent reductants like Mn(II) and Fe (II) can also be used. The reaction is called Belousov-Zhabotinskii reaction. This reaction, most studied and best understood, can be represented as... [Pg.122]

Numerous versions of the Belousov-Zhabotinsky system differ by chemical compounds used. The typical reaction involves oxidation of some organic compound by bromate ion (BrOj ) occurring in acid medium with metal catalyst (Ce3+, Mn2+, as well as complexes of Fe2+, Ru2+). As an example, a particular reaction [4] could be mentioned, where an organic reductor is malonic acid CH2(COOH)2 and Ce3+ ions serve as a catalyst. In this reaction a solution changes periodically its colour due to oscillations in Ce3+ concentration. Generally speaking, the reaction consists of two stages. At the first one metal is oxidized... [Pg.468]

The oxidation of [W(CN)8] by bromate ions in perchloric acid solution 101) was found to be partially autocatal3dic due to the following reactions ... [Pg.274]

In the BZ reaction, malonic acid is oxidized in an acidic medium by bromate ions, with or without a catalyst (usually cerous or ferrous ions). It has been known since the 1950s that this reaction can exhibit limit-cycle oscillations, as discussed in Section 8,3. By the 1970s, it became natural to inquire whether the BZ reaction could also become chaotic under appropriate conditions. Chemical chaos was first reported by Schmitz, Graziani, and Hudson (1977), but their results left room for skepticism—some chemists suspected that the observed complex dynamics might be due instead to uncontrolled fluctuations in experimental control parameters. What was needed was some demonstration that the dynamics obeyed the newly emerging laws of chaos. [Pg.437]

Example 14.3. The Belousov-Zhabotinsky reaction [22,27-29], The reaction is an oxidation of malonic acid by bromate ion in sulfuric acid, catalyzed by a Ce(III)/Ce(IV) redox couple. Many variations with other organic acids and transition-metal ions are possible [22] (Belousov used citric acid, and manganese, ruthenium, or iron can replace cerium). The color of the solution alternates between clear [Ce(III)] and pale yellow [Ce(IV)], and more dramatically between red and blue if ferroin is added as indicator. [Pg.452]

Despite the importance of the chlorite-iodide systems in the development of nonlinear chemical dynamics in the 1980s, the Belousov-Zhabotinsky(BZ) reaction remains as the most intensively studied nonlinear chemical system, and one displaying a surprising variety of behavior. Oscillations here were discovered by Belousov (1951) but largely unnoticed until the works of Zhabotinsky (1964). Extensive description of the reaction and its behavior can be found in Tyson (1985), Murray (1993), Scott (1991), or Epstein and Pojman (1998). There are several versions of the reaction, but the most common involves the oxidation of malonic acid by bromate ions BrOj in acid medium and catalyzed by cerium, which during the reaction oscillates between the Ce3+ and the Ce4+ state. Another possibility is to use as catalyst iron (Fe2+ and Fe3+). The essentials of the mechanisms were elucidated by Field et al. (1972), and lead to the three-species model known as the Oregonator (Field and Noyes, 1974). In this... [Pg.101]

Although the 004 and 104 ions have been known for a long time, Br04 was not synthesized until 1965. The ion was synthesized by oxidizing the bromate ion with xenon difluoride, producing xenon, hydrofluoric acid, and the perbromate ion. (a) Write the balanced equation for this reaction, (b) What are the oxidation states of Br in the Br-containing species in this reaction ... [Pg.994]

In this section we will focus our attention on the chemical mechanism of the Belousov-Zhabotinsky (B-Zh) reaction. As mentioned above, the B-Zh reaction is one of the most extensively studied among the oscillating chemical reactions [15-47], The classical B-Zh oscillating reaction system presents the oxidation of malonic acid (MA) by bromate ion (potassium bromate) in an acid medium (sulfuric acid), catalyzed by the single-electron Ce /Ce redox couple. The oxidized form of the catalyst, the Ce" ion, is yellow colored, and the reduced one, Ce, is colorless. The periodicity of the B-Zh reaction is detected as a periodic yellow coloring of the solution. [Pg.177]

Table 8.1. Reduced EFN mechanism for the self-oscillation oxidation of malonic acid by bromate ion in the presence of cerium ions [29]... Table 8.1. Reduced EFN mechanism for the self-oscillation oxidation of malonic acid by bromate ion in the presence of cerium ions [29]...
The Belousov-Zhabotinsky (BZ) system is a methodically characterized chemical oscillation and provides an archetype scheme for smdy of wide ranges of patterning features in oscillatory chemical reactions [47-53]. This consists of bromination reaction initially and auto-oxidation of organic substrates is takes place in sequential processes by bromate ions. Overall, the reaction is catalyzed by redox catalysts in a concentrated water-acidic solution. [Pg.27]

We now wish to test the above gel-reaction-diflfusion approach (Eqs 9.7-9.10) using the BZ reaction, which consists in the oxidation of malonic acid by bromate ions in acidic medium. The reaction proceeds only when catalyzed by a suitable metal ion. In the experiments, the chosen catalyst is the ruthenium tris(2,2 -bipyridine) that intervenes through its oxydo-reduction couple (Ru(bpy)3 /Ru(bpy)j ). In a batch reactor or a CSTR, this reaction exhibits well-documented periodic oscillations of concentrations in some region of the parameter space. [Pg.169]

Inspired by the Belousov-Zhabotinskii reaction, where cerium(III) is reoxidized by bromate ions. Ho developed a dual oxidant system consisting of ammonium hexanitratocerate(IV) and sodium bromate for the oxidation of arylmethanols (benzylic alcohols) to the corresponding aldehydes (Ho, 1978). The method has also been successfully used for the oxidation of hydroquinones to quinones (scheme 59) and for the oxidation of sulfides to sulfoxides (Ho, 1979). [Pg.344]

Determination of chromium as lead chromate (precipitation from homogeneous solution) Discussion. Use is made of the homogeneous generation of chromate ion produced by the slow oxidation of chromium(III) by bromate at 90-95 °C in the presence of excess of lead nitrate solution and an acetate buffer. The crystals of lead chromate produced are relatively large and easily filtered the volume of the precipitate is about half that produced by the standard method of precipitation. [Pg.454]

Similar results were obtained when carbon was oxidized in liquid medium. Carbon in aqueous suspension is attacked by many oxidizing agents, e.g., permanganate (49-32), chromate (52-54), hypochlorite (52, 55), persulfate (52, 56, 57), and bromate ions (52, 56, 57) chlorine (49), dilute nitric acid (52,58), and concentrated nitric acid (28). The neutralization behavior against the four bases used in Table I was studied with a few samples oxidized in liquid medium (45, 46). The same ratio was observed as with the oxygen-treated carbons, except that twice the amount of groups reacting with sodium bicarbonate was found (Table III). [Pg.188]

In the presence of an oxidant, e.g., chlorate or bromate ions, the electrode reaction is transposed into an adsorption coupled regenerative catalytic mechanism. Figure 2.85 depicts the dependence of the azobenzene net peak current with the concentration of the chlorate ions used as an oxidant. Different curves in Fig. 2.85 correspond to different adsorption strength of the redox couple that is controlled by the content of acetonitrile in the aqueous electrolyte. In most of the cases, parabolic curves have been obtained, in agreement with the theoretically predicted effect for the surface catalytic reaction shown in Fig. 2.81. In a medium containing 50% (v/v) acetonitrile (curve 5 in Fig. 2.85) the current dramatically increases, confirming that moderate adsorption provides the best conditions for analytical application. [Pg.119]

This mechanism can be illustrated by the reaction of ferrous ions with hydrogen peroxide (42), the reduction of organic peroxides by cuprous ions (63), as well as by the reduction of perchlorate ions by Ti(III) (35), V(II) (58), Eu(II) (71), The oxidation of chromous ions by bromate and nitrate ions may also be classified in this category. In the latter cases, an oxygen transfer from the ligand to the metal ion has been demonstrated (8), As analogous cases one may cite the oxidation of Cr(H20)6+2 by azide ions (15) (where it has been demonstrated that the Cr—N bond is partially retained after oxidation), and the oxidation of Cr(H20)6+2 by 0-iodo-benzoic acid (6, 8), where an iodine transfer was shown to take place. [Pg.130]


See other pages where Oxidation by bromate ions is mentioned: [Pg.568]    [Pg.344]    [Pg.298]    [Pg.568]    [Pg.344]    [Pg.298]    [Pg.64]    [Pg.132]    [Pg.219]    [Pg.100]    [Pg.369]    [Pg.416]    [Pg.292]    [Pg.297]    [Pg.75]    [Pg.228]    [Pg.288]    [Pg.293]    [Pg.459]    [Pg.481]    [Pg.1047]    [Pg.219]    [Pg.2]    [Pg.288]    [Pg.293]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Bromat

Bromate

Bromate ion

Bromated ion

Bromates

Bromation

Oxidation bromate

© 2024 chempedia.info