Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation alkanes, selectivity, titanium

One of the exciting results to come out of heterogeneous catalysis research since the early 1980s is the discovery and development of catalysts that employ hydrogen peroxide to selectively oxidize organic compounds at low temperatures in the liquid phase. These catalysts are based on titanium, and the important discovery was a way to isolate titanium in framework locations of the inner cavities of zeolites (molecular sieves). Thus, mild oxidations may be run in water or water-soluble solvents. Practicing organic chemists now have a way to catalytically oxidize benzene to phenols alkanes to alcohols and ketones primary alcohols to aldehydes, acids, esters, and acetals secondary alcohols to ketones primary amines to oximes secondary amines to hydroxyl-amines and tertiary amines to amine oxides. [Pg.229]

Selective Oxidation of Alkanes, Alkenes, and Phenol with Aqueous H2O2 on Titanium Silicate Molecular Sieves... [Pg.273]

The initial coordination of reactants has indeed been proposed to explain the selective oxidation of alkenes in the presence of saturated hydrocarbons. It was argued that, owing to the hydrophobic nature of titanium silicates, the concentration of both hydrocarbons inside the catalyst pores is relatively high and hence the alkenes must coordinate to TiIv. Consequently, the titanium peroxo complex will be formed almost exclusively on Tilv centers that already have an alkene in their coordination sphere, and will therefore oxidize this alkene rather than an alkane which may be present in the catalyst (Huybrechts et al., 1992). Objections to this proposal are based on the fact that the intrinsically higher reactivity of alkenes with respect to saturated hydrocarbons is sufficient to account for the selectivity observed (Clerici et al., 1992). But coordination around the titanium center of an alcohol molecule, particularly methanol, is nevertheless proposed to explain the formation of acidic species, as was previously discussed. In summary, coordination around Tiiv could play a more important role than it does in solution chemistry as a consequence of the hydrophobicity of the environment where the reactions take place. [Pg.325]

Redox silicalites with elements other than titanium have found catalytic applications in various organic oxidations. V-ZSM-11 is reported to catalyze alkane oxidation and is found to oxidize even primary C-H bonds [98]. Detailed studies indicate that V silicalites are better than Ti silicalites for alkane oxidation, as it is found that molecular oxygen can act as the oxidant in the former case [99]. V-ZSM-5 shows selectivity toward alcohol oxidation in allyl and methallyl alcohols... [Pg.2806]

The discovery in the early 80 s of titanium silicalites [62-64] opened the new application perspective of zeolitic materials as oxidation catalysts. Several reactions of partial oxidation of organic reactants using dilute solutions of hydrogen peroxide could for the first time be performed selectively in very mild conditions. Other elements inserted in the lattice of silicalites have since been shown to have similarly interesting catalytic properties including, vanadium, zirconium, chromium and more recently tin and arsenic [65]. Titanium silicalites with both MFI (TS-1) and MEL (TS-2) structures have however been the object of more attention and they still seem to display unmatched properties. Indeed some of these reactions like the oxyfunctionalization of alkanes [66-69] by H2O2 are not activated by other Ti containing catalysts (with the exception of Ti-Al-Beta [70]). The same situation... [Pg.221]

The incorporation of Ti into various framework zeolite structures has been a very active research area, particularly during the last 6 years, because it leads to potentially useful catalysts in the oxidation of various organic substrates with diluted hydrogen peroxide [1-7]. The zeolite structures, where Ti incorporation has been achieved are ZSM-5 (TS-1) [1], ZSM-11 (TS-2) [2] ZSM-48 [3] and beta [4]. Recently, mesoporous titanium silicates Ti-MCM-41 and Ti-HMS have also been reported [5]. TS-1 and TS-2 were found to be highly active and selective catalysts in various oxidation reactions [6,7]. All other Ti-modified zeolites and molecular sieves had limited but interesting catalytic activities. For example, Ti-ZSM-48 was found to be inactive in the hydroxylation of phenol [8]. Ti-MCM-41 and Ti-HMS catalyzed the oxidation of very bulky substrates like 2,6-di-tert-butylphenol, norbomylene and a-terpineol [5], but they were found to be inactive in the oxidation of alkanes [9a], primary amines [9b] and the ammoximation of carbonyl compounds [9a]. As for Ti-P, it was found to be active in the epoxidation of alkenes and the oxidation of alkanes and alcohols [10], even though the conversion of alkanes was very low. Davis et al. [11,12] also reported that Ti-P had limited oxidation and epoxidation activities. In a recent investigation, we found that Ti-P had a turnover number in the oxidation of propyl amine equal to one third that of TS-1 and TS-2 [9b]. As seen, often the difference in catalytic behaviors is not attributable to Ti sites accessibility. [Pg.309]

Microporous titanium silicate (e.g., TS-1, Ti-(3, Ti-ZSM-12, Ti-mordenite) is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxyla-tion of phenol, and the epoxidation of alkenes with aqueous H202. The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework. [Pg.562]

Thus the weakly Bronsted acidic boron zeolites allow acid-catalyzed reactions to be carried out with high selectivity. Gallium substitution gives effective, sulfur-resistant catalysts for the synthesis of aromatics from lower alkanes, without the need for noble metal doping [8], The nonacidic titanium siUcalite exhibits very interesting properties in selective oxidation reactions with H2O2 [T32]. [Pg.253]

Although the main applications of zeohtic sohds in catalysis will continue to be as solid acids in the synthesis and transformations of petrochemicals and commodity chemicals they continue to be considered as catalysts and catalyst supports for a range of reactions of synthetic and industrial relevance. The most important of these are of titanium- and tin-containing solids in selective oxidations. Other well-studied reactions over zeohtes include light hydrocar-bons-to-aromatics (Ga-zeolites) selective catalytic reduction of NO (transition metal exchanged zeolites) C C bond formation (Pd zeohtes) selective alkane oxyfunctionalisation with air (MAPOs, M Mn, Fe, Co) and chiral catalysis over encapsulated chiral complexes. [Pg.399]


See other pages where Oxidation alkanes, selectivity, titanium is mentioned: [Pg.76]    [Pg.152]    [Pg.30]    [Pg.260]    [Pg.327]    [Pg.293]    [Pg.135]    [Pg.215]    [Pg.152]    [Pg.185]    [Pg.30]    [Pg.639]    [Pg.196]    [Pg.78]    [Pg.909]    [Pg.65]    [Pg.66]    [Pg.385]    [Pg.388]    [Pg.393]    [Pg.606]    [Pg.1615]    [Pg.372]    [Pg.135]    [Pg.553]   


SEARCH



Alkanes selective oxidation

Alkanes selectivity

Alkanes, oxidation selective, titanium silicalite

Oxidative alkanes

Oxides titanium oxide

Selective alkanes

Titanium oxidized

© 2024 chempedia.info