Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ortho exchange

As mentioned in the previous section, Ru(PPh3)3Cl2 and Ru(acetylacetonate)3 were reported to catalyze ortho exchange of for H in arylcarboxylic acids. However, the efficiency of these catalysts for this process was less than that of RhCl3-3H20, and the range of applicable substrates more limited. [Pg.73]

If / = 1 for each nucleus, as in H2 and N2, the total wave function must be symmetric to nuclear exchange. There are nine nuclear spin wave functions of which six are symmetric and three antisymmetric to exchange. Figure 5. f 8 illustrates the fact that ortho- ll2 (or N2)... [Pg.130]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

The efficiency of reduction of benzophenone derivatives is greatly diminished when an ortho alkyl substituent is present because a new photoreaction, intramolecular hydrogen-atom abstraction, then becomes the dominant process. The abstraction takes place from the benzylic position on the adjacent alkyl chain, giving an unstable enol that can revert to the original benzophenone without photoreduction. This process is known as photoenolization Photoenolization can be detected, even though no net transformation of the reactant occurs, by photolysis in deuterated hydroxylic solvents. The proton of the enolic hydroxyl is rapidly exchanged with solvent, so deuterium is introduced at the benzylic position. Deuterium is also introduced if the enol is protonated at the benzylic carbon by solvent ... [Pg.755]

Charton has recently examined substituent effects in the ortho position in benzene derivatives and in the a-position in pyridines, quinolines, and isoquinolines. He concludes that, in benzene derivatives, the effects in the ortho position are proportional to the effects in the para position op). However, he finds that effects of a-sub-stituents on reactions involving the sp lone pair of the nitrogen atoms in pyridine, quinoline, and isoquinoline are approximately proportional to CT -values, or possibly to inductive effects (Taft s a ). He also notes that the effects of substituents on proton-deuterium exchange in the ortho position of substituted benzenes are comparable to the effects of the same substituents in the a-position of the heterocycles. [Pg.232]

The fact that in this work a satisfactory linear free energy correlation was obtained for reaction at an ortho position again shows that hydrogen exchange is a reaction of very small steric requirement, as noted elsewhere504. [Pg.224]

Rates of exchange were either much slower, or negligibly slow for compounds with a substituent ortho to the N,N-dimethyl group, and this was attributed to... [Pg.224]

Katritzky et a/.511 have measured rate coefficients for deuteration of 3,5-dimethylphenol and heterocyclic analogues. As in all of the deuteration work of this group, rates of exchange were measured by the nmr method, which is useful for following exchanges at more than one position in the molecule but is, of course, much less accurate than detritiation techniques. In this study, the chemical shift for the ortho and para protons for the parent compound was too small to allow separate integration, but it was apparent that rates of exchange at these two positions did not differ by a factor > 4. From the rate-acidity profile (Table 149) reaction clearly occurs on the neutral species at pD < 3.5 (the log kl versus pD slope was 0.96) and upon the anion at pD > 3.5 (slope zero), and the reactivity of the anion to the neutral molecule was estimated as 107-8, close to the value of 107 noted above. [Pg.232]

The data in the table show that the reaction is accelerated by —I substituents and vice versa consequently, substituent effects are most marked at the ortho position and Shatenshtein et al.590 have shown that a correlation exists between the log rate of exchange and the al values for the ortho substituents. This suggests that steric hindrance is very slight in the reaction, and this is entirely consistent with the reaction mechanism in which rate-determining attack on hydrogen occurs. [Pg.270]

The intense activation of ortho positions by strongly electron-withdrawing groups has produced some interesting kinetic results in the base-catalysed exchange of pyridine and its derivatives. For the neutral molecule, exchange occurs... [Pg.276]

In 2004, Bolm et al. reported the use of chiral iridium complexes with chelating phosphinyl-imidazolylidene ligands in asymmetric hydrogenation of functionalized and simple alkenes with up to 89% ee [17]. These complexes were synthesized from the planar chiral [2.2]paracyclophane-based imida-zolium salts 74a-c with an imidazolylidenyl and a diphenylphosphino substituent in pseudo ortho positions of the [2.2]paracyclophane (Scheme 48). Treatment of 74a-c with t-BuOLi or t-BuOK in THF and subsequent reaction of the in situ formed carbenes with [Ir(cod)Cl]2 followed by anion exchange with NaBARF afforded complexes (Rp)-75a-c in 54-91% yield. The chela-... [Pg.222]

Bakke et al. (1982) have shown how montmorillonite catalyses chlorination and nitration of toluene nitration leads to 56 % para and 41 % ortho derivative compared to approximately 40 % para and 60 % ortho derivatives in the absence of the catalyst. Montmorillonite clays have an acidity comparable to nitric acid / sulphuric acid mixtures and the use of iron-exchanged material (Clayfen) gives a remarkable improvement in the para, ortho ratio in the nitration of phenols. The nitration of estrones, which is relevant in making various estrogenic drugs, can be improved in a remarkable way by using molecular engineered layer structures (MELS), while a reduction in the cost by a factor of six has been indicated. With a Clayfen type catalyst, it seems possible to manipulate the para, ortho ratio drastically for a variety of substrates and this should be useful in the manufacture of fine chemicals. In principle, such catalysts may approach biomimetic chemistry our ability to predict selectivity is very limited. [Pg.154]

Reaction selectivity of the parent ortho-QM has also been explored with a variety of amino acid and related species.30 In these examples, the rates of alkylation and adduct yields were quantified over a range of temperatures and pH values. The initial QM3 was generated by exposing a quaternary benzyl amine (QMP3) to heat or ultraviolet radiation (Scheme 9.10). Reversible generation of QM3 was implied by subsequent exchange of nucleophiles at the benzylic position under alternative photochemical or thermal activation.30 Report of this work also included the first suggestion that the reversible nature of QM alkylation could be used for controlled delivery of a potent electrophile. [Pg.303]

S. P., Wilkinson, D. J., Parallel chemistry investigations of ortho-directed hydrogen isotope exchange between substituted aromatics and isotopic water novel catalysis by cyclooctadienyliridium( I) pentan-1,3-dionates, Tetrahedron Lett. 2000, 41, 2705-2708. [Pg.151]

Other transformations supplied by these enzymes are para-ortho-hydrogen conversion, and the exchange reaction between H2 and protons of water.409-412 The hydrogenase enzymes found in various microorganisms are very different in their protein structure and in the types of electron carrier they use. [Pg.130]


See other pages where Ortho exchange is mentioned: [Pg.131]    [Pg.26]    [Pg.290]    [Pg.219]    [Pg.579]    [Pg.156]    [Pg.773]    [Pg.36]    [Pg.264]    [Pg.134]    [Pg.195]    [Pg.200]    [Pg.222]    [Pg.226]    [Pg.261]    [Pg.264]    [Pg.269]    [Pg.347]    [Pg.449]    [Pg.475]    [Pg.393]    [Pg.395]    [Pg.183]    [Pg.187]    [Pg.685]    [Pg.696]    [Pg.155]    [Pg.106]    [Pg.349]    [Pg.121]    [Pg.135]    [Pg.144]    [Pg.144]    [Pg.442]    [Pg.59]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Directed ortho-halogen exchange

© 2024 chempedia.info