Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic solids, surface acidity

Interactions in Solid-Surface Luminescence Temperature Variation. Solid-surface luminescence analysis, especially solid-surface RTF, is being used more extensively in organic trace analysis than in the past because of its simplicity, selectivity, and sensitivity (,1,2). However, the interactions needed for strong luminescence signals are not well understood. In order to understand some of the interactions in solid-surface luminescence we recently developed a method for the determination of room-temperature fluorescence and phosphorescence quantum yields for compounds adsorbed on solid surfaces (27). In addition, we have been investigating the RTF and RTF properties of the anion of p-aminobenzoic acid adsorbed on sodium acetate as a model system. Sodium acetate and the anion of p-aminobenzoic acid have essentially no luminescence impurities. Also, the overall system is somewhat easier to study than compounds adsorbed on other surfaces, such as filter paper, because sodium acetate is more simple chemically. [Pg.160]

Werner complex See coordination compound. ver-nor, kam,picks ) wet aahing org chem The conversion of an organic compound into ash (decomposition) by treating the compound with nitric or sulfuric acid. wet ash-ii) wettability chem The ability of any solid surface to be wetted when in contact with a liquid that is, the surface tension of the liquid is reduced so that the liquid spreads over the surface.. wed-a bil-od-e ... [Pg.402]

The protonation mechanism includes Coulomb electrostatic forces resulting from charged surfaces. The development of surface acidity by the solid phase of the subsurface offers the possibility that solutes having proton-selective organic functional groups can be adsorbed through a protonation reaction. [Pg.110]

A heterogeneous natural system such as the subsurface contains a variety of solid surfaces and dissolved constituents that can catalyze transformation reactions of contaminants. In addition to catalytically induced oxidation of synthetic organic pollutants, which are enhanced mainly by the presence of clay minerals, transformation of metals and metalloids occurs with the presence of catalysts such as Mn-oxides and Fe-containing minerals. These species can alter transformation pathways and rates through phase partitioning and acid-base and metal catalysis. [Pg.295]

Finally, even if these criteria are satisfied, there remains the question of whether the product will adhere to form a film or just precipitate homogeneously in the solution. This is the most difficult criterion to answer a priori. The hydroxide and/or oxy groups present on many substrates in aqueous solutions are likely to be quite different in a nonaqueous solvent (depending on whether hydroxide groups are present or not). Another factor that could conceivably explain the general lack of film formation in many organic solvents is the lower Hamaker constant of water compared with many other liquids this means that the interaction between a particle in the solvent and a solid surface will be somewhat more in water than in most other liquids (see Chapter 1, van der Waals forces). From the author s own experience, although slow precipitation can be readily accomplished from nonaqueous solutions, film formation appears to be the exception rather than the rule. The few examples described in the literature are confined to carboxylic acid solvents (see later). [Pg.79]

Organic Sorbate-Inorganic Solid Surface Reactions Illustrative Example 11.7 Estimating the Adsorption of Benzoic Acid to Goethite... [Pg.388]

Mineral Surfaces. Organic matter is chemically adsorbed (deriva-tized) at the surfaces of clay minerals, zeolites, and related minerals (105) and is at times protected, concentrated, and degraded by contact with the solid surfaces. For example, porphyrins are protected (106), as are optically active amino acids by montmorillonite (107). This may result in part from the position of the organic matter in lattice spaces, as shown by Stevenson and Cheng (108) for proteinaceous substances keyed into hexagonal holes on interlamellar surfaces of expanding lattice clays, or from the fact that there are ordered structures at solid-water interfaces (109). [Pg.16]

For decades such adsorption had been assumed to involve dipole interactions and interacting sites were termed "polar." It is quite clear in the above studies that dipoles in the polymers and in the solid surfaces do not contribute measurably to adsorption. Even from carbon tetrachloride, the solvent most favorable to adsorption, the amount of basic polymer (PMMA) that adsorbed onto basic calcium carbonate was only 2.5% of the amount that adsorbed on the same area of silica surface. Similarly, the amount of acidic polymer (CPVC) that adsorbed onto the acidic silica from any of the six solvents was less than 0.2% of the amount that adsorbed from carbon tetrachloride or dichloromethane onto the same area of basic calcium carbonate. It is concluded that adsorption of organic acids or bases from neutral organic solvents onto inorganic solids is governed entirely by acid-base interactions and is quite independent of dipole phenomena. It is therefore proposed that heats of adsorption are actually enthalpies of acid-base interaction and should therefore be subject to the Drago correlation ... [Pg.82]

The lubrication system is extremely complex. The mechanism of lubrication is partly dictated by the nature of interactions between the lubricant and the solid surface. Additives blended into lubricating oil formulations either adsorb onto the sliding surfaces, eg., fatty alcohols, fatty amines, amides, phosphoric acid esters (friction modifiers), or react with the surface, eg., ZDDP, MoDTC, MoDDP organic phosphates (extreme pressure). Some interactions affecting the surfaces of metals include adsorption, chemisorption, and tribochemical reactions-these form new compounds on the surface and lubrication by reaction products (Bhushan and Gupta, 1991 Briscoe et al., 1973 Briscoe and Evens, 1982 Heinicke, 1984 Hsu and Klaus, 1978 and 1979 Klaus and Tewksbury, 1987 Lansdown, 1990 Liston, 1993 McFadden et al., 1998 Studt, 1989). [Pg.170]

The surface reactions in reductive dissolution processes are illustrated for a Fe(III) oxyhydroxide solid phase in Eqs. 3.53-3.55, with data shown in Fig. 3.10 for the organic ligand ascorbic acid. Other examples include Mn(IV) or Mn(III) oxyhydroxide solids and ligands, such as quinones, phenols, and inorganic oxyanions. Taking bimessite (<5-Mn02) and selenite (SeOj ) as a case in point, one can adapt Eq. 3.53 in the form27... [Pg.159]

Commonly, the amount of metal ions adsorbed by the solid surface increases with increasing pH for humic substances, clays, or clay—humic acid mixtures. Metal-ions adsorbed in acid media increase with pH until the threshold value required for partial dissolution of solid and formation of soluble metal-humate complexes is exceeded (Fig. 3.18). Metal-organic complexes experience three types of interactions, which... [Pg.137]


See other pages where Organic solids, surface acidity is mentioned: [Pg.2777]    [Pg.101]    [Pg.107]    [Pg.452]    [Pg.567]    [Pg.630]    [Pg.144]    [Pg.6]    [Pg.148]    [Pg.149]    [Pg.287]    [Pg.297]    [Pg.299]    [Pg.312]    [Pg.726]    [Pg.146]    [Pg.426]    [Pg.494]    [Pg.317]    [Pg.264]    [Pg.273]    [Pg.148]    [Pg.508]    [Pg.39]    [Pg.55]    [Pg.630]    [Pg.63]    [Pg.157]    [Pg.72]    [Pg.72]    [Pg.165]    [Pg.97]    [Pg.345]    [Pg.7]    [Pg.337]    [Pg.139]    [Pg.161]    [Pg.292]    [Pg.95]   


SEARCH



Acid surface

Acidic solids

Organic solids, surface acidity basicity

Organic surfaces

Solid acid

© 2024 chempedia.info