Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic reactions rearrangement reaction

Other possibilities for practical application of resin catalysis include some organic reactions involving addition, cyclization, and structural rearrangement. Increased stability and specific control of structure has led to the increased use of cation exchange resins as catalysts. As in the case of cation exchange resins many... [Pg.775]

Thomson - v Click Organic Interactive to predict products from a variety of sigmatropic rearrangement reactions. [Pg.1191]

In Part 2 of this book, we shall be directly concerned with organic reactions and their mechanisms. The reactions have been classified into 10 chapters, based primarily on reaction type substitutions, additions to multiple bonds, eliminations, rearrangements, and oxidation-reduction reactions. Five chapters are devoted to substitutions these are classified on the basis of mechanism as well as substrate. Chapters 10 and 13 include nucleophilic substitutions at aliphatic and aromatic substrates, respectively, Chapters 12 and 11 deal with electrophilic substitutions at aliphatic and aromatic substrates, respectively. All free-radical substitutions are discussed in Chapter 14. Additions to multiple bonds are classified not according to mechanism, but according to the type of multiple bond. Additions to carbon-carbon multiple bonds are dealt with in Chapter 15 additions to other multiple bonds in Chapter 16. One chapter is devoted to each of the three remaining reaction types Chapter 17, eliminations Chapter 18, rearrangements Chapter 19, oxidation-reduction reactions. This last chapter covers only those oxidation-reduction reactions that could not be conveniently treated in any of the other categories (except for oxidative eliminations). [Pg.381]

A diverse group of organic reactions catalyzed by montmorillonite has been described and some reviews on this subject have been published.19 Examples of those transformations include addition reactions, such as Michael addition of thiols to y./bunsatu rated carbonyl compounds 20 electrophilic aromatic substitutions,19c nucleophilic substitution of alcohols,21 acetal synthesis196 22 and deprotection,23 cyclizations,19b c isomerizations, and rearrangements.196 24... [Pg.33]

Photochemical Rearrangement Reactions in Synthetic Organic Chemistry... [Pg.33]

Charge density-NMR chemical shift correlation in organic ions, 11, 125 Charge distribution and charge separation in radical rearrangement reactions, 38, 111 Chemically induced dynamic nuclear spin polarization and its applications, 10, 53 Chemiluminesance of organic compounds, 18, 187 Chiral clusters in the gas phase, 39, 147... [Pg.354]

The experimental observations were interpreted by assuming that the redox cycle starts with the formation of a complex between the catalyst and the substrate. This species undergoes intramolecular two-electron transfer and produces vanadium(II) and the quinone form of adrenaline. The organic intermediate rearranges into leucoadrenochrome which is oxidized to the final product also in a two-electron redox step. The +2 oxidation state of vanadium is stabilized by complex formation with the substrate. Subsequent reactions include the autoxidation of the V(II) complex to the product as well as the formation of aVOV4+ intermediate which is reoxidized to V02+ by dioxygen. These reactions also produce H2O2. The model also takes into account the rapidly established equilibria between different vanadium-substrate complexes which react with 02 at different rates. The concentration and pH dependencies of the reaction rate provided evidence for the formation of a V(C-RH)3 complex in which the formal oxidation state of vanadium is +4. [Pg.426]

From a theoretical viewpoint, the effect of aqueous solvation in organic reactions has received considerable attention in recent years. These studies have gone a step beyond analysis of simple models to consider reactions such as SN1, SN2, cycloaddition reactions and Claisen rearrangement, for instance, with more realistic models. [Pg.342]

In parallel with the development of the heterolysis of b-substituted alkyl radicals, a rearrangement reaction was observed and extensively studied in organic solvents. This rearrangement was first noted for b-(acyloxy)alkyl radicals (Scheme 5) by Surzur et al. [48] and, later, for b-(phosphatoxy)alkyl radicals by the Crich and Giese groups [49,50]. [Pg.15]

Twenty chapters cover such new and exciting developments as metal-catalyzed synthesis of allenes, strained cyclic allenes, the numerous applications of different metallated allenes in organic synthesis, as well as the many addition and rearrangement reactions of allenes and allene units in natural products like the remarkable enyne-allenes. [Pg.10]

Several standard type organic reactions were successfully investigated, e.g., Reformatsky (58), Hofmann and Curtius (55), Willgerodt (7), (19), Glaisen Condensation, Pinacol Rearrangement (42) and Darzens Reaction (21). [Pg.140]

Interest within the physical organic community on the mechanism for the formation and reaction of ion-pair and ion-dipole intermediates of solvolysis peaked sometime in the 1970s and has declined in recent years. The concepts developed during the heyday of this work have stood the test of time, but these reactions have not been fuUy characterized, even for relatively simple systems. Richard and coworkers have prepared a short chapter that summarizes their recent determinations of absolute rate constants for the reactions of these weak association complexes in water. This work provides a quantitative basis for the formerly largely qualitative discussions of competing carbocation-nucleophile addition and rearrangement reactions of ion and dipole pairs. [Pg.24]

Electrochemical fluorination in anhydrous hydrogen fluoride (Simons process) involves electrolysis of organic compounds (ahphatic hydrocarbons, haloalkanes, acid halides, esters, ethers, amines) at nickel electrodes. It leads mostly to perfluori-nated compounds, but is accompanied to a high extent by cleavage and rearrangement reactions. The mechanism of the formation of carbocations according to Eq. (1) and Scheme 1 is assumed... [Pg.129]

The domino cycloaddition-iV-acyliminium ion cyclization cascade has been extensively reviewed. Tandem reactions combining Diels-Alder reactions and sigma-tropic rearrangement reactions in organic synthesis have been extensively reviewed. The tandem Diels-Alder reaction between acetylenedicarboxaldehyde and N,N -dipyrrolylmethane has been extensively studied at the RHT/3-21G and RHF/6-31G levels.The molecular mechanism of the domino Diels-Alder reaction between hexafluorobut-2-yne and A,A -dipyrrolylmethane has been studied using density functional theory. [Pg.478]


See other pages where Organic reactions rearrangement reaction is mentioned: [Pg.67]    [Pg.99]    [Pg.124]    [Pg.140]    [Pg.265]    [Pg.467]    [Pg.17]    [Pg.1486]    [Pg.111]    [Pg.79]    [Pg.96]    [Pg.385]    [Pg.115]    [Pg.107]    [Pg.511]    [Pg.776]    [Pg.112]    [Pg.273]    [Pg.299]    [Pg.120]    [Pg.145]    [Pg.670]    [Pg.763]    [Pg.846]    [Pg.893]    [Pg.908]    [Pg.918]    [Pg.1012]    [Pg.858]    [Pg.740]    [Pg.652]    [Pg.304]    [Pg.284]    [Pg.214]    [Pg.138]    [Pg.257]   
See also in sourсe #XX -- [ Pg.1270 ]




SEARCH



Organic reactions rearrangements

Organic rearrangements

Photochemical Rearrangement Reactions in Synthetic Organic Chemistry

© 2024 chempedia.info