Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic esterification

In each case the configuration around the boron changes from trigonal planar to tetrahedral on adduct formation. Because of this ability to form additional compounds, boron trifluoride is an important catalyst and is used in many organic reactions, notably polymerisation, esterification, and Friedel-Crafts acylation and alkylations. [Pg.154]

The exchange resins 6nd application in (i) the purification of water (cation-exchange resin to remove salts, followed by anion-exchange resin to remove free mineral acids and carbonic acid), (ii) removal of inorganic impurities from organic substances, (iii) in the partial separation of amino acids, and (iv) as catalysts in organic reactions (e.g., esterification. Section 111,102, and cyanoethylation. Section VI,22). [Pg.1020]

The most apparent chemical property of carboxylic acids their acidity has already been examined m earlier sections of this chapter Three reactions of carboxylic acids—con version to acyl chlorides reduction and esterification—have been encountered m pre vious chapters and are reviewed m Table 19 5 Acid catalyzed esterification of carboxylic acids IS one of the fundamental reactions of organic chemistry and this portion of the chapter begins with an examination of the mechanism by which it occurs Later m Sec tions 19 16 and 19 17 two new reactions of carboxylic acids that are of synthetic value will be described... [Pg.809]

When esterification is the objective water is removed from the reaction mixture to encourage ester formation When ester hydrolysis is the objective the reaction is carried out m the presence of a generous excess of water Both reactions illustrate the applica tion of Le Chatelier s principle (Section 6 10) to organic synthesis... [Pg.848]

The methyl and ethyl esters of cyanoacetic acid are slightly soluble ia water but are completely miscible ia most common organic solvents including aromatic hydrocarbons. The esters, like the parent acid, are highly reactive, particularly ia reactions involving the central carbon atom however, the esters tend not to decarboxylate. They are prepared by esterification of cyanoacetic acid and are used principally as chemical iatermediates. [Pg.225]

Acryflc acid, alcohol, and the catalyst, eg, sulfuric acid, together with the recycle streams are fed to the glass-lined ester reactor fitted with an external reboiler and a distillation column. Acrylate ester, excess alcohol, and water of esterification are taken overhead from the distillation column. The process is operated to give only traces of acryflc acid in the distillate. The bulk of the organic distillate is sent to the wash column for removal of alcohol and acryflc acid a portion is returned to the top of the distillation column. If required, some base may be added during the washing operation to remove traces of acryflc acid. [Pg.154]

A continuous bleed is taken from the reactor to remove high boilers. Values contained in this bleed are recovered in the bleed stripper and the distillate from this operation is recycled to the esterification reactor. The bleed stripper residue is a mixture of high boiling organic material and sulfuric acid, which is recovered for recycle in a waste sulfuric acid plant. [Pg.154]

Cellulosics. CeUulosic adhesives are obtained by modification of cellulose [9004-34-6] (qv) which comes from cotton linters and wood pulp. Cellulose can be nitrated to provide cellulose nitrate [9004-70-0] which is soluble in organic solvents. When cellulose nitrate is dissolved in amyl acetate [628-63-7] for example, a general purpose solvent-based adhesive which is both waterproof and flexible is formed. Cellulose esterification leads to materials such as cellulose acetate [9004-35-7], which has been used as a pressure-sensitive adhesive tape backing. Cellulose can also be ethoxylated, providing hydroxyethylceUulose which is useful as a thickening agent for poly(vinyl acetate) emulsion adhesives. Etherification leads to materials such as methylceUulose [9004-67-5] which are soluble in water and can be modified with glyceral [56-81-5] to produce adhesives used as wallpaper paste (see Cellulose esters Cellulose ethers). [Pg.234]

In general, the reactions of the perfluoro acids are similar to those of the hydrocarbon acids. Salts are formed with the ease expected of strong acids. The metal salts are all water soluble and much more soluble in organic solvents than the salts of the corresponding hydrocarbon acids. Esterification takes place readily with primary and secondary alcohols. Acid anhydrides can be prepared by distillation of the acids from phosphoms pentoxide. The amides are readily prepared by the ammonolysis of the acid haUdes, anhydrides, or esters and can be dehydrated to the corresponding nitriles (31). [Pg.311]

Reaction with Organic Compounds. Many organic reactions are catalyzed by acids such as HCl. Typical examples of the use of HCl in these processes include conversion of HgnoceUulose to hexose and pentose, sucrose to inverted sugar, esterification of aromatic acids, transformation of acetaminochlorobenzene to chloroaruHdes, and inversion of methone [1074-95-9]. [Pg.444]

Manufacture. Cyanoacetic acid and cyanoacetates are iadustrially produced by the same route as the malonates starting from a sodium chloroacetate solution via a sodium cyanoacetate solution. Cyanoacetic acid is obtained by acidification of the sodium cyanoacetate solution followed by organic solvent extraction and evaporation. Cyanoacetates are obtained by acidification of the sodium cyanoacetate solution and subsequent esterification with the water formed being distilled off. Other processes reported ia the Hterature iavolve the oxidation of partially oxidized propionittile [107-12-0] (59). Higher esters of cyanoacetic acid are usually made through transesterification of methyl cyanoacetate ia the presence of alumiaiumisopropoxide [555-31-7] as a catalyst (60). [Pg.471]

In typical processes, the gaseous effluent from the second-stage oxidation is cooled and fed to an absorber to isolate the MAA as a 20—40% aqueous solution. The MAA may then be concentrated by extraction into a suitable organic solvent such as butyl acetate, toluene, or dibutyl ketone. Azeotropic dehydration and solvent recovery, followed by fractional distillation, is used to obtain the pure product. Water, solvent, and low boiling by-products are removed in a first-stage column. The column bottoms are then fed to a second column where MAA is taken overhead. Esterification to MMA or other esters is readily achieved using acid catalysis. [Pg.253]

NaOH solution is added dropwise to an aqueous suspension of this ester at 40—70°C over 1 h and the reaction mixture kept for 2 h to give 86.6% DHNA of 98.7% purity (74), which is then esterified with (CgH O) to obtain PDNA. The esterification process is dramatically improved by adding a small amount of inorganic or organic acid, preferably methanesulfonic acid, benzene sulfonic acid, or naphthalene sulfonic acid subsequent isolation and crystallisation gives a pure product (75). [Pg.500]

Generally, the carboxyl group is not readily reduced. Lithium aluminum hydride is one of the few reagents that can reduce these organic acids to alcohols. The scheme involves the formation of an alkoxide, which is hydroly2ed to the alcohol. Commercially, the alternative to direct reduction involves esterification of the acid followed by the reduction of the ester. [Pg.284]

The butyl alcohols undergo esterification with organic acids in the usual manner in the presence of trace amounts of mineral acid catalysts. Esterification is fastest with /-butyl alcohol and slowest with the primary alcohols although /-butyl alcohol undergoes substantial dehydration in the presence of the typical acid esterification catalysts. [Pg.357]

Esterification. The hydroxyl groups of sugars can react with organic and inorganic acids just as other alcohols do. Both natural and synthetic carbohydrate esters are important in various apphcations (1,13). Phosphate monoesters of sugars are important in metabohc reactions. An example is the enzyme-catalyzed, reversible aldol addition between dibydroxyacetone phosphate [57-04-51 and D-ylyceraldehyde 3-phosphate [591-57-1 / to form D-fmctose 1,6-bisphosphate [488-69-7],... [Pg.481]

Esterification is one of the most important reactions of fatty acids (25). Several types of esters are produced including those resulting from reaction with monohydric alcohols, polyhydric alcohols, ethylene or propylene oxide, and acetjiene or vinyl acetate. The principal monohydric alcohols used are methyl, ethyl, propyl, isopropyl, butyl, and isobutyl alcohols (26) (see Esterification Esters, organic). [Pg.84]

Acid—Base Catalysis. Inexpensive mineral acids, eg, H2SO4, and bases, eg, KOH, in aqueous solution are widely appHed as catalysts in industrial organic synthesis. Catalytic reactions include esterifications, hydrations, dehydrations, and condensations. Much of the technology is old and well estabhshed, and the chemistry is well understood. Reactions that are cataly2ed by acids are also typically cataly2ed by bases. In some instances, the kinetics of the reaction has a form such as the following (9) ... [Pg.162]

The variety of enzyme-catalyzed kinetic resolutions of enantiomers reported ia recent years is enormous. Similar to asymmetric synthesis, enantioselective resolutions are carried out ia either hydrolytic or esterification—transesterification modes. Both modes have advantages and disadvantages. Hydrolytic resolutions that are carried out ia a predominantiy aqueous medium are usually faster and, as a consequence, require smaller quantities of enzymes. On the other hand, esterifications ia organic solvents are experimentally simpler procedures, aHowiag easy product isolation and reuse of the enzyme without immobilization. [Pg.337]

In the esterification of organic acids with alcohols, it has been shown that in most cases under acid catalysis, the union is between acyl and alkoxy groups. Acid hydrolysis of acetoxysuccinic acid gives malic acid with retention of configuration at the asymmetric carbon atom (11) ... [Pg.374]

Completion of Esterification. Because the esterification of an alcohol and an organic acid involves a reversible equiUbrium, these reactions usually do not go to completion. Conversions approaching 100% can often be achieved by removing one of the products formed, either the ester or the water, provided the esterification reaction is equiUbrium limited and not rate limited. A variety of distillation methods can be appHed to afford ester and water product removal from the esterification reaction (see Distillation). Other methods such as reactive extraction and reverse osmosis can be used to remove the esterification products to maximize the reaction conversion (38). In general, esterifications are divided into three broad classes, depending on the volatility of the esters ... [Pg.376]

Esterification. Esters are formed by the reaction of ethanol with inorganic and organic acids, acid anhydrides, and acid halides. If the inorganic acid is oxygenated, eg, sulfuric acid, nitric acid, the ester has a carbon—oxygen linkage that is easily hydrolyzed (24—26). [Pg.403]

The vapor-phase esterification of ethanol has also been studied extensively (363,364), but it is not used commercially. The reaction can be catalyzed by siUca gel (365,366), thoria on siUca or alumina (367), zirconium dioxide (368), and by xerogels and aerogels (369). Above 300°C the dehydration of ethanol becomes appreciable. Ethyl acetate can also be produced from acetaldehyde by the Tischenko reaction (370—372) using an aluminum alkoxide catalyst and, with some difficulty, by the boron trifluoride-catalyzed direct esterification of ethylene with organic acids (373). [Pg.416]

The choice of which reactions to include is not an easy one. First there are the well known "Name Reactions", that have appeared in various monographs or in the old Merck index. Some of these are so obvious mechanistically to the modern organic chemistry practitioner that we have in fact omitted them for instance esterification of alcohols with acid chlorides - the Schotten-Baumann procedure. Others are so important and so well entrenched by name, like the Baeyer-Villiger ketone oxidation, that it is impossible to ignore them. In general we have kept older name reactions that are not obvious at first glance. [Pg.459]


See other pages where Organic esterification is mentioned: [Pg.281]    [Pg.94]    [Pg.281]    [Pg.212]    [Pg.281]    [Pg.94]    [Pg.281]    [Pg.212]    [Pg.96]    [Pg.1014]    [Pg.2]    [Pg.438]    [Pg.242]    [Pg.106]    [Pg.346]    [Pg.74]    [Pg.199]    [Pg.65]    [Pg.73]    [Pg.162]    [Pg.251]    [Pg.265]    [Pg.378]    [Pg.107]    [Pg.316]    [Pg.318]    [Pg.375]    [Pg.377]    [Pg.388]    [Pg.390]    [Pg.1322]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Acids, organic direct esterification

Esterification organic acids

Organic acids, acid-catalyzed esterification

Oxidative esterification with organic oxidants

Solid-phase organic synthesis esterification

© 2024 chempedia.info