Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ordered detection limits

Figure 4. Ordered detection limits—alternative literature definitions and proposed... Figure 4. Ordered detection limits—alternative literature definitions and proposed...
Fig. 3. Ordered detection limits — 1968. (Reproduced from Ref. 23. Copyright 1968 American Chemical Society.)... Fig. 3. Ordered detection limits — 1968. (Reproduced from Ref. 23. Copyright 1968 American Chemical Society.)...
X-ray spectroscopy Analytical method by which a sample is irradiated with X-rays, characteristic radiation being emitted after scattering from the specimen. The detection limits for various elements are of the ordering cm. ... [Pg.429]

The detectable limits are given for samples such as they are introduced into the apparatus they should be previously diluted in order to be nebulized. It thereby is useful to apply a dilution coefficient, usually at least 10. The dilution depends on the sample viscosity. [Pg.36]

This localization phenomenon has also been shown to be important in a case of catalysis by premicellar aggregates. In such a case [ ] premicellar aggregates of cetylpyridinium chloride (CPC) were shown to enhance tire rate of tire Fe(III) catalysed oxidation of sulphanilic acid by potassium periodate in tire presence of 1,10-phenantliroline as activator. This chemistry provides a lowering of tire detection limit for Fe(III) by seven orders of magnitude. It must also be appreciated, however, tliat such premicellar aggregates of CPC actually constitute mixed micelles of CPC and 1,10-phenantliroline tliat are smaller tlian conventional CPC micelles. [Pg.2593]

Calibration of an arc or spark source is linear over three orders of magnitude, and detection limits are good, often within the region of a few micrograms per gram for elements such as vanadium, aluminum, silicon, and phosphorus. Furthermore, the nature of the matrix material composing the bulk of the sample appears to have little effect on the accuracy of measurement. [Pg.114]

Simultaneous detection of between 4 and 40% of the mass range, gives two orders of magnitude decrease in detection limits (see Photodetectors). [Pg.540]

Highly sensitive iastmmental techniques, such as x-ray fluorescence, atomic absorption spectrometry, and iaductively coupled plasma optical emission spectrometry, have wide appHcation for the analysis of silver ia a multitude of materials. In order to minimize the effects of various matrices ia which silver may exist, samples are treated with perchloric or nitric acid. Direct-aspiration atomic absorption (25) and iaductively coupled plasma (26) have silver detection limits of 10 and 7 l-lg/L, respectively. The use of a graphic furnace ia an atomic absorption spectrograph lowers the silver detection limit to 0.2 l-ig/L. [Pg.91]

Environment. Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (sims) has been demonstrated (97). Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous samples onto philodendron leaves prior to analysis by static sims. The minimum detection limits on philodendron leaves were estimated to be between 40 and 0.4 ng/mm for PMPA and IMPA and between 40 and 4 ng/mm for EMPA. Sims analyses of IMPA adsorbed on 10 different crop leaves were also performed in order to investigate general apphcabiflty of static sims for... [Pg.247]

The dye is excited by light suppHed through the optical fiber (see Fiber optics), and its fluorescence monitored, also via the optical fiber. Because molecular oxygen, O2, quenches the fluorescence of the dyes employed, the iatensity of the fluorescence is related to the concentration of O2 at the surface of the optical fiber. Any glucose present ia the test solution reduces the local O2 concentration because of the immobilized enzyme resulting ia an iacrease ia fluorescence iatensity. This biosensor has a detection limit for glucose of approximately 100 ]lM , response times are on the order of a miaute. [Pg.110]

Rapid, quantitative measurement of trace to minor elemental composition of solids and solutions excellent detection limits, with linear calibration over 5 orders of magnitude... [Pg.48]

Atomic absorption spectroscopy of VPD solutions (VPD-AAS) and instrumental neutron activation analysis (INAA) offer similar detection limits for metallic impurities with silicon substrates. The main advantage of TXRF, compared to VPD-AAS, is its multielement capability AAS is a sequential technique that requires a specific lamp to detect each element. Furthermore, the problem of blank values is of little importance with TXRF because no handling of the analytical solution is involved. On the other hand, adequately sensitive detection of sodium is possible only by using VPD-AAS. INAA is basically a bulk analysis technique, while TXRF is sensitive only to the surface. In addition, TXRF is fast, with an typical analysis time of 1000 s turn-around times for INAA are on the order of weeks. Gallium arsenide surfaces can be analyzed neither by AAS nor by INAA. [Pg.355]

Compared to EDS, which uses 10-100 keV electrons, PEXE provides orders-of-magnitude improvement in the detection limits for trace elements. This is a consequence of the much reduced background associated with the deceleration of ions (called bremsstrahlun compared to that generated by the stopping of the electrons, and of the similarity of the cross sections for ioiuzing atoms by ions and electrons. Detailed comparison of PIXE with XRF showed that PDCE should be preferred for the analysis of thin samples, surfrce layers, and samples with limited amounts of materials. XRF is better (or bulk analysis and thick specimens because the somewhat shallow penetration of the ions (e.g., tens of pm for protons) limits the analytical volume in PIXE. [Pg.358]

Molecular ion mass interferences are not as prevalent for the simpler matrices, as is clear from the mass spectrum obtained for the Pechiney 11630 A1 standard sample by electron-gas SNMSd (Figure 4). For metals like high-purity Al, the use of the quadrupole mass spectrometer can be quite satisfiictory. The dopant elements are present in this standard at the level of several tens of ppm and are quite evident in the mass spectrum. While the detection limit on the order of one ppm is comparable to that obtained from optical techniques, the elemental coverage by SNMS is much more comprehensive. [Pg.578]

Because GDMS can provide ultratrace analysis with total elemental coverage, the technique fills a unique analytical niche, supplanting Spark-Source Mass Spectrometry (SSMS) by supplying the same analysis with an order-of-magnitude better accuracy and orders-of-magnitude improvement in detection limits. GDMS analy-... [Pg.609]


See other pages where Ordered detection limits is mentioned: [Pg.799]    [Pg.1933]    [Pg.521]    [Pg.570]    [Pg.570]    [Pg.571]    [Pg.549]    [Pg.20]    [Pg.171]    [Pg.316]    [Pg.318]    [Pg.246]    [Pg.248]    [Pg.410]    [Pg.107]    [Pg.109]    [Pg.64]    [Pg.71]    [Pg.321]    [Pg.28]    [Pg.162]    [Pg.182]    [Pg.319]    [Pg.350]    [Pg.476]    [Pg.532]    [Pg.540]    [Pg.580]    [Pg.581]    [Pg.604]    [Pg.607]    [Pg.613]    [Pg.617]    [Pg.622]   
See also in sourсe #XX -- [ Pg.432 ]

See also in sourсe #XX -- [ Pg.14 , Pg.15 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

Order detection

© 2024 chempedia.info