Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical properties dispersion

Simoni F 1997 Nonlinear Optical Properties of Liquid Crystals and Polymer-Dispersed Liquid Crystals (Singapore World Scientific)... [Pg.2571]

The value of pigments results from their physical—optical properties. These ate primarily deterrniaed by the pigments physical characteristics (crystal stmcture, particle size and distribution, particle shape, agglomeration, etc) and chemical properties (chemical composition, purity, stabiUty, etc). The two most important physical—optical assets of pigments are the abiUty to color the environment in which they ate dispersed and to make it opaque. [Pg.4]

Optical Properties. The high refractive index (2.42 at 589.3 nm) and dispersion (0.044) are the basis for the brilliance and fire of a properly cut gemstone. The optical transmission out to 10.6 p.m for Type Ila diamonds makes possible windows for CO2 lasers and for devices such as were in the... [Pg.559]

Optical Properties. Haze is the most common optical property problem that depends on colorants. Because dyes ate dissolved into the resin system, they contribute Htde or no practical haze to the system. Pigments can have significant haze, which is a combination of the pigment itself and the quahty of dispersion of the pigment. In an opaque appHcation haze is not a concern, but in transparent or translucent appHcations haze development becomes an important criterion in colorant evaluation. [Pg.457]

Aesthetic dental ceramics are essentially glass-matrix materials with varying volume fractions of crystalline fillers. Crystalline fillers are used in the glass matrix both for dispersion strengthening, usually at volume fractions of 40—70%, and for altering optical properties, usually at low volume fractions. Dental ceramics are generally manufactured from two distinct classes of materials, ie, beneficiated feldspathic minerals and glass—ceramics. [Pg.471]

The UV spectrum of a complex conjugated molecule is usually observed to consist of a few broad band systems, often with fine structure, which may be sharpened up in non-polar solvents. Such a spectrum can often be shown to be more complex than it superficially appears, by investigation of the magnetic circular dichroism (MCD) spectrum, or by introduction of dissymmetry and running the optical rotatory dispersion (ORD) or circular dichroism (CD) spectrum. These techniques will frequently separate and distinguish overlapping bands of different symmetry properties <71PMH(3)397). [Pg.20]

Clouds cover roughly two-thirds of our earth s surface and play an important role in influencing global climate by affecting the radiation budget. Cirrus clouds are one example of a cloud type whose optical properties are not accurately known. Cirrus clouds form in the upper troposphere and are composed almost exclusively of non-spherical ice crystal particles. The impact of cloud coverage on dispersion of pollution in the atmosphere is an area of great concern and intensive study. [Pg.11]

We now want to study the consequences of such a model with respect to the optical properties of a composite medium. For such a purpose, we will consider the phenomenological Lorentz-Drude model, based on the classical dispersion theory, in order to describe qualitatively the various components [20]. Therefore, a Drude term defined by the plasma frequency and scattering rate, will describe the optical response of the bulk metal or will define the intrinsic metallic properties (i.e., Zm((a) in Eq.(6)) of the small particles, while a harmonic Lorentz oscillator, defined by the resonance frequency, the damping and the mode strength parameters, will describe the insulating host (i.e., /((0) in Eq.(6)). [Pg.97]

Dispersion of Linear and Nonlinear Optical Properties of Benzene An Ab Initio Time-Dependent Coupled-Perturbed Hartree-Fock Study Shashi P. Kama, Gautam B. Talapatra and Paras N. Prasad Journal of Chemical Physics 95 (1991) 5873-5881... [Pg.300]

The construction of calibration curves is recommended in nephelometric and turbidimetric determinations, since the relationship between the optical properties of the suspension and the concentration of the disperse phase is, at best, semi-empirical. If the cloudiness or turbidity is to be reproducible, the utmost care must be taken in its preparation. The precipitate must be very fine, so as not to settle rapidly. The intensity of the scattered light depends upon the number and the size of the particles in suspension, and provided that the average size of particles is fairly reproducible, analytical applications are possible. [Pg.727]

Chirooptical properties give more subtle information on the conformational behavior of biopolymers and peptides in solution. In early experiments, optical rotation and optical rotatory dispersion (ORD) have been recognized as valuable techniques, followed more recently by significant progress and refinements in the equipment which have resulted in the routine measurements of applied circular dichroism (CD). [Pg.162]

The present study demonstrates that the analytic calculation of hyperpolarizability dispersion coefficients provides an efficient alternative to the pointwise calculation of dispersion curves. The dispersion coefficients provide additional insight into non-linear optical properties and are transferable between the various optical processes, also to processes not investigated here as for example the ac-Kerr effect or coherent anti-Stokes Raman scattering (CARS), which depend on two independent laser frequencies and would be expensive to study with calculations ex-plictly frequency-dependent calculations. [Pg.142]

Optical systems can be used in multiphase flows at a very low volume fraction of the dispersed phase. Through a refractory index matching of hquid-liquid or liquid-solid systems, it is also possible to measure at high void fractions. However, it is not possible to obtain complete refractory index matching since the molecules at the phase boundary have different optical properties than the molecules in the bulk. Consequently, it is possible to measure at a higher fraction of the dispersed phase with larger drops and particles because of the lower surface area per volume fluid. [Pg.333]

Ti02 particles, the benzene-thermal reaction of TiCLi. and NaN3, chemical vapor reactions, plasma syntheses, or arc-melting [15-20], The optical properties of low-concentrated TiN nanoparticle systems were studied by Quinten [21], Highly dispersed TiN was used as an additive to improve the mechanical properties of titanium carbide-based cermets [22],... [Pg.280]

CuCl, especially in a single crystal form, is extensively used as an optical material for its special optical properties. Orel et al. [2] first proposed a new method to obtain CuCl particles by the reduction of Cu with ascorbic acid. Several dispersants were used in the reduction and monodispersed CuCl particles can be obtained by selecting the proper dispersant and reduction conditions. In this work, the above method was used to modify the traditional process of CuCl preparation, namely, by reducing the Cu " with sodium sulfite to obtain the highly active CuCl catalyst to be used in the direct process of methylchlorosilane synthesis. [Pg.325]

Other optical properties of gemstones, which also determine their beauty and other characteristics that make some of them unique, include the way they disperse light incident on them (see Textbox 22), their refractive index, which is unique to, and characteristic of every type of gemstone and is often used for their identification (see Textbox 22), and their luster, adularescence, asterism, and brilliance. [Pg.111]

In the case of paints and printing inks, the initial preparations will be in the semi-solid state because solvents are needed both in the process of dispersing the pigment in the paint or ink medium and for application purposes. These solvents dry out after the paint or ink is applied. When making coloured plastic articles, both heating and solvents may be used to aid dispersion in the plastic medium as part of the moulding process. However, from the viewpoint of the optical properties in all of these pigment uses, what is most important is that each of these media has a refractive index close to 1.5. [Pg.82]

The optical properties of semiconductor QDs (Fig. la-c, Tables 1 and 2) are controlled by the particle size, size distribution (dispersity), constituent material, shape, and surface chemistry. Accordingly, their physico-chemical properties depend to a considerable degree on particle synthesis and surface modification. Typical diameters of QDs range between 1 and 6 nm. The most prominent optical features of QDs are an absorption that gradually increases toward shorter... [Pg.7]

Synthesis of novel materials with desired and tunable physical and chemical properties continues to draw wide interest. Nanomaterials with a variety of shapes and sizes have been synthesized as they offer numerous possibilities to study size and shape-dependent variations of electronic, optical, and chemical properties. Nanomaterials of a particular element show drastic differences in physical and chemical properties when compared with the bulk state. For example, bulk gold, a metal that is insoluble in water can be made dispersible when it is in the nanoparticle form. There are drastic changes in the optical properties as well. Bulk gold appears yellow in color, but when it is in the nanoparticle form with an average core diameter of 16 nm, it appears wine red. Likewise, the chemistry of gold, such as catalysis, also shows a drastic change when the constituent units are in the nanometer range. [Pg.334]


See other pages where Optical properties dispersion is mentioned: [Pg.141]    [Pg.141]    [Pg.1979]    [Pg.289]    [Pg.334]    [Pg.22]    [Pg.351]    [Pg.471]    [Pg.887]    [Pg.888]    [Pg.53]    [Pg.101]    [Pg.726]    [Pg.231]    [Pg.285]    [Pg.165]    [Pg.95]    [Pg.321]    [Pg.245]    [Pg.245]    [Pg.293]    [Pg.51]    [Pg.88]    [Pg.384]    [Pg.647]    [Pg.198]    [Pg.357]    [Pg.520]    [Pg.119]    [Pg.154]    [Pg.130]    [Pg.193]    [Pg.202]   
See also in sourсe #XX -- [ Pg.447 ]




SEARCH



Dispersion nonlinear optical properties

Dispersions properties

Optical rotatory dispersion properties

© 2024 chempedia.info