Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical methods techniques

Often industry requires fast techniques to measure movements, deformations, etc. The optics methods, between them those based in speckle K gives quick solutions to this problems. [Pg.656]

Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

Existing droplet measurement techniques may be classified into three broad categories (/) optical nonimaging techniques (2) imaging techniques and (3) nonoptical methods. A comprehensive review of these techniques are available (35—39). [Pg.333]

List the advantages and disadvantages of remote sensing techniques by optical methods. [Pg.228]

For SFM, maintaining a constant separation between the tip and the sample means that the deflection of the cantilever must be measured accurately. The first SFM used an STM tip to tunnel to the back of the cantilever to measure its vertical deflection. However, this technique was sensitive to contaminants on the cantilever." Optical methods proved more reliable. The most common method for monitoring the defection is with an optical-lever or beam-bounce detection system. In this scheme, light from a laser diode is reflected from the back of the cantilever into a position-sensitive photodiode. A given cantilever deflection will then correspond to a specific position of the laser beam on the position-sensitive photodiode. Because the position-sensitive photodiode is very sensitive (about 0.1 A), the vertical resolution of SFM is sub-A. [Pg.90]

Inductively Coupled Plasma-Optical (ICP-optical) methods and ICPMS are extremely sensitive elemental survey techniques that also are described in this volume. ICP methods, however, require a solution for analysis, so that the direct... [Pg.606]

From a practical sense, MOKE is a versatile technique it is an optical method the polarization measurement is fairly easy to do the necessary optical components are common and relatively inexpensive and it has no intrinsic vacuum requirements. [Pg.725]

While the dial-indicator and optical methods differ in the equipment and/or equipment setup used to align machine components, the theory on which they are based is essentially identical. Each method measures the offset and angularity of the shafts of movable components in reference to a pre-selected stationary component. Each assumes that the stationary unit is properly installed and that good mounting, shimming, and bolting techniques are used on all machine components. [Pg.921]

As a major branch of nanotribology. Thin Film Lubrication (TFL) has drawn great concerns. The lubricant him of TFL, which exists in ultra precision instruments or machines, usually ranges from a few to tens of nanometres thick under the condition of point or line contacts with heavy load, high temperature, low speed, and low viscosity lubricant. One of the problems of TFL study is to measure the him thickness quickly and accurately. The optical method for measuring the lubricant him thickness has been widely used for many years. Goher and Cameron [3] successfully used the technique of interferometry to measure elastohydrody-namic lubrication him in the range from 100 nm to 1 /rm in 1967. Now the optical interference method and Frustrated Total Reflection (FTR) technique can measure the him thickness of nm order. [Pg.7]

The multiphase fluid systems of interest are often opaque, and thus noninvasive techniques based on optical methods or using laser beams are not effective. Various experimental techniques are available and continue to be developed to characterize opaque multiphase flows. [Pg.336]

The first two advantages listed above allow an optical method like transmission or reflection IR spectroscopy to be used for studies which would be impossible for a widely used competitive technique, electron energy loss spectroscopy (EELS). EELS must... [Pg.404]

A number of variations of the transient hot-wire method have been devised, and an optical method to detect the temperature rise has been used. A modified transient hot-wire technique using a mercury-incapillary probe was introduced by Nagashima et al., in which a thin mercury thread was used as a heater-thermometer and the capillary wall as an insulator. Using this method, they measured the thermal conductivity in mixture systems such as (Na, K)N03, (Li, Na)N03, and HTS(KN03-NaN03-NaN02, 44-7-49 mol.%). ... [Pg.185]

An important prerequisite for the use of CRMs as calibrants, at least for optical methods and particularly all AAS modes, is that they should match the matrix and level of analyte contents of the materials to be analyzed as closely as possible, so that potential matrix effects will be compensated if calibrant and sample material are affected by the applied method, e.g. the temperature program for furnace techniques, in the same way. Further it is very important for all methods that the CRMs used should not show a nugget effecf, i.e. particles with extremely high analyte content that can lead to a high analyte heterogeneity (Kurfiirst 1991 Kurfiirst et al. [Pg.139]

Liquid interfaces are widely found in nature as a substrate for chemical reactions. This is rather obvious in biology, but even in the diluted stratospheric conditions, many reactions occur at interfaces like the surface of ice crystallites. The number of techniques available to carry out these studies is, however, limited and this is particularly true in optics, since linear optical methods do not possess the ultimate molecular resolution. This resolution is inherent to nonlinear optical processes of even order. For liquid-liquid systems, optics turns out to be rather powerful owing to the possibility of nondestructive y investigating buried interfaces. Furthermore, it appears that planar interfaces are not the only config-... [Pg.160]

While methods employing radiaoactive tracer techniques have become a classical tool for the study of adsorption on electrodes, optical methods for the study of electrodes and processes occurring on them at an atomic or molecular level have undergone enormously rapid progress, which is characteristic for the contemporary development of electrochemistry. [Pg.339]

First-order phase transitions can be detected by various thermoanalytical techniques, such as DSC, thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) [31]. Phase transitions leading to visual changes can be detected by optical methods such as microscopy [3], Solid-solid transitions involving a change in the crystal structure can be detected by X-ray diffraction [32] or infrared spectroscopy [33], A combination of these techniques is usually employed to study the phase transitions in organic solids such as drugs. [Pg.600]

Only a few reviews have appeared in which application of the limiting-current method is discussed from a chemical engineering viewpoint. In the review of Tobias et al (T3) mentioned earlier, the authors examined the knowledge available on electrochemical mass transport during the early stages of its application in 1952. Ibl (II) reviewed early work on free convection, to which he and his co-workers contributed notably by development of optical methods for study of the diffusion layer. A discussion of the application of optical techniques for the study of phase boundaries has been given by Muller (M14). [Pg.218]

Gas detection methods may be split into two groups, (i) direct methods, which monitor a physical parameter of the target gas, and (ii) indirect methods, which use a chemical reaction or indicator to show the concentration of the gas being sensed. This division of methods may be further split into optical sensing techniques and non-optical techniques. This review will predominantly focus on direct optical-spectroscopy fibre sensing techniques. [Pg.457]


See other pages where Optical methods techniques is mentioned: [Pg.527]    [Pg.527]    [Pg.2502]    [Pg.333]    [Pg.889]    [Pg.442]    [Pg.607]    [Pg.625]    [Pg.496]    [Pg.935]    [Pg.25]    [Pg.40]    [Pg.231]    [Pg.283]    [Pg.689]    [Pg.405]    [Pg.40]    [Pg.72]    [Pg.239]    [Pg.172]    [Pg.433]    [Pg.535]    [Pg.32]    [Pg.77]    [Pg.224]    [Pg.648]    [Pg.327]    [Pg.569]    [Pg.147]    [Pg.88]    [Pg.155]    [Pg.156]    [Pg.871]   
See also in sourсe #XX -- [ Pg.409 ]




SEARCH



Method techniques

Optical methods

Optical techniques

© 2024 chempedia.info