Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Operating membrane cell

The first operating membrane cell was the rocking cell, largely developed by Baker, who was Castner s chief chemist, at Oldbury, and later at Runcorn. The history of the Castner Kellner plant at Runcorn gives the history of the development of the mercury cell, and indicates the way in which a technology has developed in the drive to increase production quantities and efficiencies while minimizing capital costs. [Pg.295]

Fuel cells must carry the costs of conditioning the two reactant gases as well as their own capital charges. Hydrogen requires transport to the anode side of the fuel cells. This is usually by rotary blower, but it also should be possible to operate membrane cells at some positive pressure and then to deliver the hydrogen without mechanical aid. The temperature and water content of the hydrogen must be considered in the overall heat and mass balance. Air and oxygen are candidates for use at the cathodes. The classical balance between cost and efficiency determines the choice. Wth alkaline fuel cells, the carbon dioxide in the air is of concern. It can consume the hydroxide value and contaminate the end product. It is possible to scrub the air to remove the CO2 before... [Pg.932]

Catalytic cathodes in membrane cell operations exhibit a voltage savings of 100—200 mV and a life of about 2 + yr using ultrapure brine. However, trace impurities such as iron from the caustic recirculation loop can deposit on the cathode and poison the coating, thereby reducing its economic life. [Pg.500]

The choice of technology, the associated capital, and operating costs for a chlor—alkaU plant are strongly dependent on local factors. Especially important are local energy and transportation costs, as are environmental constraints. The primary difference ia operating costs between diaphragm, mercury, and membrane cell plants results from variations ia electricity requirements for the three processes (Table 25) so that local energy and steam costs are most important. [Pg.519]

Because of limited commercial experience with anode coatings in membrane cells, commercial lifetimes have yet to be defined. Expected lifetime is 5—8 years. In some cases as of this writing (ca 1995), 10-years performance has already been achieved. Actual lifetime is dictated by the membrane replacement schedule, cell design, the level of oxygen in the chlorine gas, and by the current density at which the anode is operated. [Pg.122]

Mild steel cathodes are used extensively in chlor-alkah and chlorate cells. Newer activated cathode materials have been developed that decrease cell voltages about 0.2 V below that for cells having mild steel cathodes. Some activated cathodes have operated in production membrane cells for three years with only minor increases in voltage (17). Activated cathodes can decrease the energy consumption for chlorine—caustic production by 5 to 6.5%. [Pg.74]

Membrane cells are the state of the art chlor-alkah technology as of this writing. There are about 14 different membrane cell designs in use worldwide (34). The operating characteristics of some membrane cells are given in Table 3. The membranes are perfluorosulfonate polymers, perfluorocarboxylate polymers, and combinations of these polymers. Membranes are usually reinforced with a Teflon fabric. Many improvements have been made in membrane cell designs to accommodate membranes in recent years (35,36). [Pg.76]

FIG. 22-58 Concentration profile of electrolyte across an operating ED cell. Ion passage through the membrane is much faster than in solution, so ions are enriched or depleted at the cell-solution interface, d is the concentration boundary layer. The cell gap, A should he small. The ion concentration in the membrane proper will he much higher than shown. (Couttesij Elsevier.)... [Pg.2030]

Operation of cells at higher temperatures such as 80°C, as in membrane fuel cells, is not encouraged here because of the corrosion instability of the hardware, manufactured from titanium or titanium alloy. Even without such constraints, however, this high temperature would be unwelcome as the water produced is present as steam - without the conductive bridge of the liquid phase it would be necessary to bond the catalytic particles to the membrane with all the associated problems of technology and cost. [Pg.133]

Orica is the largest producer of chlorine in Australia and currently operates three chlor-alkali plants on the east coast. Two of these plants (in Melbourne and Sydney) are mercury cell plants dating back over 50 years while the third plant is a small, modern membrane cell plant in the central Queensland town of Gladstone. The mercury cell plants have both reached the end of their useful economic lives. [Pg.144]

The results from the operation show that SRS is able to operate successfully in a mercury plant, which has brine containing greater impurities than expected from brine in a membrane cell plant. [Pg.156]

When Bayer started the planning phase for its new membrane cell chlorine plant the company also evaluated new filtration technologies to eliminate costs for the use and disposal of filter aid and to reduce the cost of filter operation significantly. [Pg.287]

The cell in the 12-kW plant was then modified to incorporate a system of spacers between the cathode and the membrane to ensure that the membrane did not contact the cathode. When the 12-kW plant was restarted, the catholyte level had risen more than would be expected during normal process operating conditions after 36 hours of operation. The cell was dismantled and the membrane was found to have small pinholes along the bottom edge. In addition, metallic silver deposits in the form of dendritic silver crystals were found in the cell. [Pg.73]

Transport properties of hydrated PFSA membranes strongly depend on nanophase-segregated morphology, water content, and state of water. In an operational fuel cell, these characteristics are indirectly determined by the humidity level of the reactant streams and Faradaic current densities generated in electrodes, as well as the transport properhes of catalyst layers, gas diffusion layers, and flow... [Pg.359]

Recently, it was shown that the hydraulic permeation model could explain the response of the membrane performance to variations in external gas pressures in operating fuel cells. i Figure 6.15 shows data for the PEM resistance in an operational PEFC,... [Pg.401]

Distributions of water and reactants are of high interest for PEFCs as the membrane conductivity is strongly dependent on water content. The information of water distribution is instrumental for designing innovative water management schemes in a PEFC. A few authors have studied overall water balance by collection of the fuel cell effluent and condensation of the gas-phase water vapor. However, determination of the in situ distribution of water vapor is desirable at various locations within the anode and cathode gas channel flow paths. Mench et al. pioneered the use of a gas chromatograph for water distribution measurements. The technique can be used to directly map water distribution in the anode and cathode of an operating fuel cell with a time resolution of approximately 2 min and a spatial resolution limited only by the proximity of sample extraction ports located in gas channels. [Pg.509]

Mench et al. developed a technique to embed microthermocouples in a multilayered membrane of an operating PEM fuel cell so that the membrane temperature can be measured in situ. These microthermocouples can be embedded inside two thin layers of the membrane without causing delamination or leakage. An array of up to 10 thermocouples can be instrumented into a single membrane for temperature distribution measurements. Figure 32 shows the deviation of the membrane temperature in an operating fuel cell from its open-circuit state as a function of the current density. This new data in conjunction with a parallel modeling effort of Ju et al. helped to probe the thermal environment of PEM fuel cells. [Pg.510]

Chlorine (from the Greek chloros for yellow-green ) is the most abundant halogen (0.19 w% of the earth s crust) and plays a key role in chemical processes. The chlor-alkali industry has been in operation since the 1890s and improvements in the technology are still important and noticeable, for example, the transition from the mercury-based technology to membrane cells [60]. Most chlorine produced today is used for the manufacture of polyvinyl chloride, chloroprene, chlorinated hydrocarbons, propylene oxide, in the pulp and paper industry, in water treatment, and in disinfection processes [61]. A summary of typical redox states of chlorine, standard potentials for acidic aqueous media, and applications is given in Scheme 2. [Pg.281]

Sucrose uptake should be inhibited by a proton iono-phore if uptake is by a proton symport. If a proteinbinding system was operational, membrane vesicles or cells subjected to osmotic shock would be defective in uptake. If a Na+ symport was involved, uptake would be dependent on extracellular Na+. If a PTS was operational, sucrose phosphorylation would be dependent on PEP and not ATP in a crude cell extract. [Pg.897]


See other pages where Operating membrane cell is mentioned: [Pg.237]    [Pg.237]    [Pg.483]    [Pg.484]    [Pg.488]    [Pg.488]    [Pg.489]    [Pg.500]    [Pg.519]    [Pg.76]    [Pg.453]    [Pg.392]    [Pg.229]    [Pg.732]    [Pg.493]    [Pg.136]    [Pg.109]    [Pg.114]    [Pg.185]    [Pg.12]    [Pg.372]    [Pg.422]    [Pg.480]    [Pg.71]    [Pg.153]    [Pg.420]    [Pg.98]    [Pg.371]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Cells operation

Membrane operation

Operational cells

© 2024 chempedia.info