Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

On Polar Interactions

Horst mechanism of PVC stabilization. In fact, based on his observations Naqvi [134] has proposed an alternative model for the degradation and stabilization of PVC based on polar interactions within the polymer matrix, which will be discussed in the following section (Section VI). [Pg.327]

The results of Jamieson and McNeill cannot be accounted for by the intramolecular mechanism proposed by Grassie and coworkers [136,137] for the thermal degradation behavior of VC/VAc copolymers (Eqs, [28] and [29]). They can be accounted for much more convincingly by the alternative approach proposed by Naqvi based on polar interactions within the PVC matrix. Just like in copolymers even in blends, the polar carbonyl group of PVAc intensifies the concentration of like-poles in the PVC matrix resulting in destabilization. [Pg.332]

An example of a separation primarily based on polar interactions using silica gel as the stationary phase is shown in figure 10. The macro-cyclic tricothecane derivatives are secondary metabolites of the soil fungi Myrothecium Verrucaia. They exhibit antibiotic, antifungal and cytostatic activity and, consequently, their analysis is of interest to the pharmaceutical industry. The column used was 25 cm long, 4.6 mm in diameter and packed with silica gel particles 5 p in diameter which should give approximately 25,000 theoretical plates if operated at the optimum velocity. The flow rate was 1.5 ml/min, and as the retention time of the last peak was about 40 minutes, the retention volume of the last peak would be about 60 ml. [Pg.305]

The effects of exposure of organic solids to particular solvents such as pyridine on their conformational stability can also be Interpreted In terms of the structural features discussed above. How small nucleophilic molecules disrupt Inter- and Intramolecular polar Interactions In coals thereby relaxing the structural matrix and allowing further solvent penetration has been extensively discussed by Peppas (e.g. 11,12), Larsen (1,13) and Marzec (14-16) and their colleagues. Indeed the extent to which exposure to a polar solvent such as pyridine destabilizes a material s molecular structure Is a measure of the extent to which the stability of the material depends on polar Interactions. [Pg.112]

It is seen that the retention and the chiral selectivity decreases as the solute becomes less polar and more dispersive in interactive character. This indicates that both the retention and chiral selectivity is largely dependent on polar interactions between solute and stationary phase. This technique was applied to the evaluation of some samples of (-)- and (+)-hexahydromandelic acid, are the results are shown in figure 11.29. [Pg.364]

In the normal-phase extraction, compounds with polar functional groups are extracted from a nonaqueous sample. Retention is based on polar interactions such as charge-based interactions, hydrogen bonding, dipole-dipole interactions, and dispersion interactions between the sorbent and the analyte. Charge-based interactions are often not required in the normal phase, since they are very strong and difficult to disrupt (Figure 9.4). [Pg.170]

Since normal-phase SPE is usually based on polar interactions, it is of importance that both sample matrix, conditioning, equilibration, and wash solvent, are nonpolar organics. This is to ensure that there is no elution of the analyte (and thereby analyte loss) during sample application and sorbent wash. The analytes are eluted by... [Pg.170]

Characteristics of Optimization in Individual HPLC Modes 2.1.1.2.1 On Polar Interactions... [Pg.156]

Good, van Oss, and Caudhury [208-210] generalized this approach to include three different surface tension components from Lifshitz-van der Waals (dispersion) and electron-donor/electron-acceptor polar interactions. They have tested this model on several materials to find these surface tension components [29, 138, 211, 212]. These approaches have recently been disputed on thermodynamic grounds [213] and based on experimental measurements [214, 215]. [Pg.376]

There has been considerable elaboration of the simple Girifalco and Good relationship, Eq. XII-22. As noted in Sections IV-2A and X-6B, the surface ftee energies that appear under the square root sign may be supposed to be expressible as a sum of dispersion, polar, and so on, components. This type of approach has been developed by Dann [70] and Kaelble [71] as well as by Schonhom and co-workers (see Ref. 72). Good (see Ref. 73) has preferred to introduce polar interactions into a detailed analysis of the meaning of in Eq. IV-7. While there is no doubt that polar interactions are important, these are orientation dependent and hence structure sensitive. [Pg.453]

Detailed x-ray diffraction studies on polar liquid crystals have demonstrated tire existence of multiple smectic A and smectic C phases [M, 15 and 16]. The first evidence for a smectic A-smectic A phase transition was provided by tire optical microscopy observations of Sigaud etal [17] on binary mixtures of two smectogens. Different stmctures exist due to tire competing effects of dipolar interactions (which can lead to alternating head-tail or interdigitated stmctures) and steric effects (which lead to a layer period equal to tire molecular lengtli). These... [Pg.2546]

In particular, in polar solvents, the surface of a colloidal particle tends to be charged. As will be discussed in section C2.6.4.2, this has a large influence on particle interactions. A few key concepts are introduced here. For more details, see [32] (eh 13), [33] (eh 7), [36] (eh 4) and [34] (eh 12). The presence of these surface charges gives rise to a number of electrokinetic phenomena, in particular electrophoresis. [Pg.2674]

The Born model is based on electrostatic interactions, dielectric permitivity, and orbital overlaps. It has the advantage of being fairly straightforward and adaptable to computational methods. The free energy for the polarization of the solute is expressed as... [Pg.210]

The model adopted by Ri and Eyring is not now acceptable, but some of the more recent treatments of electrostatic effects are quite close to their method in principle. In dealing with polar substituents some authors have concentrated on the interaction of the substituent with the electrophile whilst others have considered the interaction of the substituent with the charge on the ring in the transition state. An example of the latter method was mentioned above ( 7.2.1), and both will be encountered later ( 9.1.2). They are really attempts to explain the nature of the inductive effect, and an important question which they raise is that of the relative importance of localisation and electrostatic phenomena in determining orientation and state of activation in electrophilic substitutions. [Pg.136]

The role of specific interactions in the plasticization of PVC has been proposed from work on specific interactions of esters in solvents (eg, hydrogenated chlorocarbons) (13), work on blends of polyesters with PVC (14—19), and work on plasticized PVC itself (20—23). Modes of iateraction between the carbonyl functionaHty of the plasticizer ester or polyester were proposed, mostly on the basis of results from Fourier transform infrared spectroscopy (ftir). Shifts in the absorption frequency of the carbonyl group of the plasticizer ester to lower wave number, indicative of a reduction in polarity (ie, some iateraction between this functionaHty and the polymer) have been reported (20—22). Work performed with dibutyl phthalate (22) suggests an optimum concentration at which such iateractions are maximized. Spectral shifts are in the range 3—8 cm . Similar shifts have also been reported in blends of PVC with polyesters (14—20), again showing a concentration dependence of the shift to lower wave number of the ester carbonyl absorption frequency. [Pg.124]

In addition to the restrictions on their mobiHty caused by steric and polar interactions between chemical groups, the protein molecules in wool fibers are covalentiy cross-linked by disulfide bonds. Permanent setting only occurs if these disulfide bonds are also rearranged to be in equiHbrium with the new shape of the fiber. Disulfide bond rearrangement occurs only at high temperature (>70° C) in wet wool and at even higher temperatures (above 100°C) in... [Pg.350]

When viscometric measurements of ECH homopolymer fractions were obtained in benzene, the nonperturbed dimensions and the steric hindrance parameter were calculated (24). Erom experimental data collected on polymer solubiUty in 39 solvents and intrinsic viscosity measurements in 19 solvents, Hansen (30) model parameters, 5 and 5 could be deterrnined (24). The notation 5 symbolizes the dispersion forces or nonpolar interactions 5 a representation of the sum of 8 (polar interactions) and 8 (hydrogen bonding interactions). The homopolymer is soluble in solvents that have solubility parameters 6 > 7.9, 6 > 5.5, and 0.2 < <5.0 (31). SolubiUty was also determined using a method (32) in which 8 represents the solubiUty parameter... [Pg.555]

Polar interactions can occur when a molecule contains a dipole or a number of dipoles which take the form of localized charges situated on different parts of the molecule. Each charge has an equal and opposite charge situated elsewhere on the molecule and, thus, the molecule has no net charge associated with it. Interactions occur between the charges on different molecules but are always accompanied by dispersive... [Pg.65]

The dipoles are shown interacting directly as would be expected. Nevertheless, it must be emphasized that behind the dipole-dipole interactions will be dispersive interactions from the random charge fluctuations that continuously take place on both molecules. In the example given above, the net molecular interaction will be a combination of both dispersive interactions from the fluctuating random charges and polar interactions from forces between the two dipoles. Examples of substances that contain permanent dipoles and can exhibit polar interactions with other molecules are alcohols, esters, ethers, amines, amides, nitriles, etc. [Pg.67]

This is one approach to the explanation of retention by polar interactions, but the subject, at this time, remains controversial. Doubtless, complexation can take place, and probably does so in cases like olefin retention on silver nitrate doped stationary phases in GC. However, if dispersive interactions (electrical interactions between randomly generated dipoles) can cause solute retention without the need to invoke the... [Pg.76]


See other pages where On Polar Interactions is mentioned: [Pg.334]    [Pg.119]    [Pg.114]    [Pg.93]    [Pg.170]    [Pg.742]    [Pg.114]    [Pg.400]    [Pg.105]    [Pg.171]    [Pg.262]    [Pg.226]    [Pg.334]    [Pg.119]    [Pg.114]    [Pg.93]    [Pg.170]    [Pg.742]    [Pg.114]    [Pg.400]    [Pg.105]    [Pg.171]    [Pg.262]    [Pg.226]    [Pg.102]    [Pg.165]    [Pg.251]    [Pg.181]    [Pg.458]    [Pg.219]    [Pg.211]    [Pg.264]    [Pg.431]    [Pg.524]    [Pg.325]    [Pg.371]    [Pg.405]    [Pg.445]    [Pg.66]    [Pg.75]    [Pg.76]    [Pg.84]   


SEARCH



Polar interactions

Polarization interaction

© 2024 chempedia.info