Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins secondary amines

In addition to the nitrile and alcohol routes for fatty amine preparation, processes have been described by Unocal and Pennwalt Corporation, using an olefin and secondary amine (14—16) by Texaco Inc., hydrogenation of nitroparaffins (17—20) by Onyx Corporation, reaction of an alkyl haUde with secondary amines (21,22) by Henkel Cie, GmbH, reduction of an ester in the presence of a secondary amine (23) by catalytic hydroammonolysis of carboxyhc acids (24) and by the Hofmann rearrangement (25). [Pg.220]

Electrolysis, Bu4N Br, H2O, CH3CN, NaHC03- This method is unsatisfactory for primary and secondary alcohols, aldehydes, olefins, or amines. [Pg.188]

Generally, isolated olefinic bonds will not escape attack by these reagents. However, in certain cases where the rate of hydroxyl oxidation is relatively fast, as with allylic alcohols, an isolated double bond will survive. Thepresence of other nucleophilic centers in the molecule, such as primary and secondary amines, sulfides, enol ethers and activated aromatic systems, will generate undesirable side reactions, but aldehydes, esters, ethers, ketals and acetals are generally stable under neutral or basic conditions. Halogenation of the product ketone can become but is not always a problem when base is not included in the reaction mixture. The generated acid can promote formation of an enol which in turn may compete favorably with the alcohol for the oxidant. [Pg.233]

While the usual eonsequence of hydration of enamines is eleavage to a secondary amine and an aldehyde or ketone, numerous cases of stable carbinolamines are known (102), particularly in examples derived from cyclic enamines. The selective terminal hydration (505) of a cross-conjugated dienamine-vinylogous amide is an interesting example which gives an indication of the increased stabilization of the vinylogous amide as compared to simple enamines, which is also seen in the decreased nucleophilicity of the conjugated amino olefin-carbonyl system. [Pg.418]

In 1974, Hegedus and coworkers reported the pa]ladium(II)-promoted addition of secondary amines to a-olefins by analogy to the Wacker oxidation of terminal olefins and the platinum(II) promoted variant described earlier. This transformation provided an early example of (formally) alkene hydroamination and a remarkably direct route to tertiary amines without the usual problems associated with the use of alkyl halide electrophiles. [Pg.136]

Several reviews cover hetero-substituted allyllic anion reagents48-56. For the preparation of allylic anions, stabilized by M-substituents, potassium tm-butoxide57 in THF is recommended, since the liberated alcohol does not interfere with many metal exchange reagents. For the preparation of allylic anions from functionalized olefins of medium acidity (pKa 20-35) lithium diisopropylamide, dicyclohexylamide or bis(trimethylsilyl)amide applied in THF or diethyl ether are the standard bases with which to begin. Butyllithium may be applied advantageously after addition of one mole equivalent of TMEDA or 1,2-dimethoxyethane for activation when the functional groups permit it, and when the presence of secondary amines should be avoided. [Pg.234]

Although the nucleophilic addition of secondary amines to thiirene dioxides can be interpreted as following the same mechanistic pathway, the reaction was found to be second order in amine119 (which is typical for the addition of amines to olefins in appropriate solvents13 2 133), and the addition is syn. As a result, mechanisms with a cyclic-concerted addition across the carbon-carbon bond, or a stepwise addition involving two molecules of amine per one molecule of thiirene dioxide, have been proposed. [Pg.411]

Another catalytic application emanating from the Hieber base reaction was developed by Reppe and Vetter [108]. They showed that 1-propanol 126 could be generated by treatment of ethylene 125 with catalytic amounts of Fe(CO)5 78 under CO-pressure and basic reaction conditions (Scheme 33). Thereby, trimethylamine and V-alkylated amino acid derivatives mrned out to be optimal bases for this reaction. Like ethylene 125, propylene could be transferred mainly to 1-butanol diolefins like butadiene only reacted to monoalcohols. By employing these reaction conditions to olefins in the presence of ammonia, primary or secondary amines, mono-, di-, and trialkylamines were obtained whose alkyl chains were elongated with one carbon atom, compared to the olefins. [Pg.207]

A general synthesis of the secondary amines RNHMe and RNHEt has been developed starting from the iminophosphoranes (181). Alkylation with methyl or ethyl iodides (all other halides gave olefins) gave the salts (182) from which secondary amines were obtained on alkaline hydrolysis. [Pg.183]

TS-1 is a material that perfectly fits the definition of single-site catalyst discussed in the previous Section. It is an active and selective catalyst in a number of low-temperature oxidation reactions with aqueous H2O2 as the oxidant. Such reactions include phenol hydroxylation [9,17], olefin epoxida-tion [9,10,14,17,40], alkane oxidation [11,17,20], oxidation of ammonia to hydroxylamine [14,17,18], cyclohexanone ammoximation [8,17,18,41], conversion of secondary amines to dialkylhydroxylamines [8,17], and conversion of secondary alcohols to ketones [9,17], (see Fig. 1). Few oxidation reactions with ozone and oxygen as oxidants have been investigated. [Pg.40]

Ruthenium and iron compounds have been claimed to catalyze the hydroamina-tion of olefins with NH3, primary and secondary amines (120-190°C, 10-20 bar) [113, 114]. Ethylene is the most reactive olefin either with ruthenium (Eq. 4.11) or... [Pg.98]

Polymeric polyolefins, such as polybutadiene, secondary amines, and synthesis gas, are reacted in the presence of a catalyst system comprising a ruthenium-containing compound, a rhodium-containing compound, a steri-cally hindered phosphine, and a solvent [1191]. Preferred polybutadiene feedstocks are those with a predominance of main chain, rather than pendant olefin groups and in particular, those polymers containing both the 1,2-polybutadiene and 1,4-polybutadiene units. These polymers of high amine content are useful as down-hole corrosion inhibitors. [Pg.93]

The most characteristic reaction of butadiene catalyzed by palladium catalysts is the dimerization with incorporation of various nucleophiles [Eq. (11)]. The main product of this telomerization reaction is the 8-substituted 1,6-octadiene, 17. Also, 3-substituted 1,7-octadiene, 18, is formed as a minor product. So far, the following nucleophiles are known to react with butadiene to form corresponding telomers water, carboxylic acids, primary and secondary alcohols, phenols, ammonia, primary and secondary amines, enamines, active methylene compounds activated by two electron-attracting groups, and nitroalkanes. Some of these nucleophiles are known to react oxidatively with simple olefins in the presence of Pd2+ salts. Carbon monoxide and hydrosilanes also take part in the telomerization. The telomerization reactions are surveyed based on the classification by the nucleophiles. [Pg.151]

Dipolar cycloaddition reactions, of nitrones to olefins, 46, 97 of 3-phenylsydnone, 46, 98 Dispiro[5.1.5.1]tetradecane-7,14-dione, photolysis to cyclohexylidene-cyclohexane, 47, 34 preparation from cyclohexanecarbonyl chloride and triethylamine, 47, 34 Displacement of bromine from 1-bromo-2-fluoroheptane to give 2-fluoro-heptyl acetate, 46, 37 N,N -Disubstituted formamidines from triethyl orthoformate and primary amines, 46, 41 N,N-Disubstituted thioureas from secondary amines and silicon tetra-isothiocyanate, 45, 69 N,N-Disubstituted ureas from secondary amines and silicon tetraiso-cyanate, 45, 69... [Pg.74]

The selectivity in favor of the desired monobenzylated product was found to be >99% and the immobilized Pt02 was found to be 4-5 times more active than the commercial Adams catalysts. In solution or in immobilized form, the PtOz colloid is effective in the hydrogenation of carbonyl compounds or of olefins. Recently, the heterogeneous catalytic amination of aryl bromides by immobilized Pd(0) particles has been reported [163], Secondary amines such as piperidine and diethyl amine are used in the amination of aryl bromides and the reaction proceeds with good turnover numbers and regio-control. The catalysts can be reused repeatedly without loss of activity or selectivity after filtration from the reaction mixture. [Pg.82]

Most reactive metabolites produced by CYP metabolic activation are electrophilic in nature, which means that they can react easily with the nucleophiles present in the protein side chains. Several functional groups are recurrent structural features in M Bis. These groups have been reviewed by Fontana et al. [26] and can be summarized as follows terminal (co or co — 1) acetylenes, olefins, furans and thiophenes, epoxides, dichloro- and trichloroethylenes, secondary amines, benzodioxoles (methylenediox-yphenyl, MDP), conjugated structures, hydrazines, isothiocyanates, thioamides, dithiocarbamates and, in general, Michael acceptors (Scheme 11.1). [Pg.270]

Secondary and tertiary amines can be obtained if the hydroformylation of olefins is conducted in the presence of primary and secondary amines under elevated hydrogen partial pressures. Here the rhodium catalyst is involved in both steps, the hydroformylation of an olefin as well as the hydrogenation of the imine or enamine resulting from a condensation of the oxo-aldehyde with the amine (Scheme 14). This combination of hydroformylation and reductive amination is also known as hydroaminomethylation and has been applied to the synthesis of various substrates of pharmaceutical interest [55-57] as well as to the synthesis of macrocycles [60-63] and dendrimers [64,65]. [Pg.84]

Aminoacylpalladium complexes, obtained from the reaction between an olefin, PdCk, CO and a secondary amine, have also been reported to undergo carbonylation in the presence of piperidine to afford keto amides (Scheme 9) [51]. [Pg.248]

Hydroaminomethylation is a simple, efficient and atom-economic method to synthesize various amines. This one-pot reaction consists of three consecutive steps in the first step a hydroformylation of an olefin is performed followed by the reaction of the resulting aldehyde with a primary or secondary amine to give the corresponding enamine or imine. Lastly, this intermediate is hydrogenated to the desired secondary or tertiary amine (Fig. 11) [33-39]. In most cases rhodium salts or complexes are used as the homogeneous catalyst in the hydroaminomethylation. [Pg.43]

In 1971, Coulson at DuPont reported the first example of an OHA reaction catalyzed by soluble Rh and Ir complexes [5]. Secondary amines such as dimethyl-amine, pyrrolidine and piperidine were effectively added to ethylene, while primary amines, ammonia and heavier olefins were essentially unreactive (see Equation 6.3). IrCl3-3H20 proved to be an equally effective catalyst precursor in these reactions. It is probable that, under the conditions employed in this study, the Rh(III) and Ir(III) salts are reduced to monovalent, electron-rich species such as 3 (see Equation 6.6). [Pg.146]

Olefin 6. Tertiary/secondary amine-aliphatic carbon... [Pg.292]

The 1,3-dipolar cycloaddition of azomethine yUdes with olefins gives rise to pyrrolidines which represent structural elements of organocatalysts, natural products, and drug candidates. Asymmetric metal-catalyzed variants attracted considerable attention over the last few years [64], Recently, Vicario et al. reported an organo-catalytic [3 -i- 2] cycloaddition of azomethine ylides and a,p-unsaturated aldehydes mediated by a chiral secondary amine [65]. [Pg.428]


See other pages where Olefins secondary amines is mentioned: [Pg.771]    [Pg.771]    [Pg.508]    [Pg.218]    [Pg.311]    [Pg.482]    [Pg.136]    [Pg.60]    [Pg.160]    [Pg.562]    [Pg.536]    [Pg.98]    [Pg.414]    [Pg.43]    [Pg.571]    [Pg.714]    [Pg.84]    [Pg.698]    [Pg.920]    [Pg.1408]    [Pg.1508]    [Pg.37]   


SEARCH



Amination olefins

Amination secondary

Amines secondary

Electron-deficient olefins secondary amines

Olefinic amines

© 2024 chempedia.info