Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydration termination

The most synthetically valuable method for converting alkynes to ketones is by mercuric ion-catalyzed hydration. Terminal alkynes give methyl ketones, in accordance with the Markovnikov rule. Internal alkynes give mixtures of ketones unless some structural feature promotes regioselectivity. Reactions with Hg(OAc)2 in other nucleophilic solvents such as acetic acid or methanol proceed to (3-acetoxy- or (3-methoxyalkenylmercury intermediates,152 which can be reduced or solvolyzed to ketones. The regiochemistry is indicative of a mercurinium ion intermediate that is opened by nucleophilic attack at the more positive carbon, that is, the additions follow the Markovnikov rule. Scheme 4.8 gives some examples of alkyne hydration reactions. [Pg.335]

In an effort to apply the cooperative principles of metalloenzyme reactivity, involving a combination of metal-ligand and hydrogen bonding, we have reported a ruthenium catalyst incorporating imidazolyl phosphine ligands that efficiently and selectively hydrates terminal alkynes (5). We subsequently found that application of pyridyl phosphines to the reaction resulted in a >10-fold rate enhancement and complete anti-Markovnikov selectivity, even in the... [Pg.237]

The most synthetically valuable method for converting acetylenes to ketones is by mercuric-ion-catalyzed hydration. Terminal alkynes give methyl ketones in good yields. Unsymmetrical internal alkynes give a mixture of two possible ketones in the absence of some special stabilizing feature. Scheme 4.6 gives some examples of acetylene hydrations. [Pg.165]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

Hydration of alkynes follows Markovmkov s rule terminal alkynes yield methyl substituted ketones... [Pg.380]

Methyl ketones are important intermediates for the synthesis of methyl alkyl carbinols, annulation reagents, and cyclic compounds. A common synthetic method for the preparation of methyl ketones is the alkylation of acetone derivatives, but the method suffers limitations such as low yields and lack of regioselectivity. Preparation of methyl ketones from olefins and acetylenes using mercury compounds is a better method. For example, hydration of terminal acetylenes using HgSO gives methyl ketones cleanly. Oxymercuration of 1-olefins and subsequent oxidation with chromic oxide is... [Pg.11]

While the usual eonsequence of hydration of enamines is eleavage to a secondary amine and an aldehyde or ketone, numerous cases of stable carbinolamines are known (102), particularly in examples derived from cyclic enamines. The selective terminal hydration (505) of a cross-conjugated dienamine-vinylogous amide is an interesting example which gives an indication of the increased stabilization of the vinylogous amide as compared to simple enamines, which is also seen in the decreased nucleophilicity of the conjugated amino olefin-carbonyl system. [Pg.418]

In the reaetion of methyldiaeetylene with hydrazine hydrate, both 3-ethylpyrazole (14) and 3,5-dimethylpyrazole (15) were formed in a 4 1 ratio (73DIS). Both pyrazoles were preparatively isolated (3,5-dimethylpyrazole is erystalline and ethylpyrazole is a liquid) and identified by eomparison with authentie samples. These data show that primary attaek of monosubstituted 1,3-diynes by hydrazine is mainly direeted toward the terminal aeetylenie bond. [Pg.164]

In aqueous solutions, the prevailing process is the primary attack of the unsubstituted nitrogen atom of alkylhydrazines at the terminal carbon atom of diacetylene with predominant formation of l-alkyl-5-methylpyrazoles (18) (73DIS). The content of isomeric l-alkyl-3-methylpyrazoles is less than 10% (GLC). In the authors opinion, this different direction of the attack at diacetylene in aqueous media is related to the hydration of alkylhydrazines and the formation of ammonium base RN" H2(0H) NH2, in which the primary amino group becomes the major nucleophilic center. [Pg.165]

The reaction of disubstituted diacetylenes with hydrazine hydrate was reported by Darbinyan et al. (70AKZ640). In the first stage the addition of hydrazine to the terminal carbon atom of the diacetylene system is analogous to that of primary amines to diacetylene (69ZC108 69ZC110). With monosubstituted diacetylenes (R = H), hydrazine adds to the terminal triple bond. This leads to the formation of vinylacetylenic hydrazine 22 which cyclizes to dihydropyrazole 23 subjected to further isomerization to the pyrazole 25. It is possible that hydrazine 22 undergoes hydration to the ketone 24 which can easily be cyclized to the pyrazole 25... [Pg.166]

Kohle-gehalt, m. carbon content, -hydrat, n. carbohydrate, -klemme, /. Elec.) carbon terminal, -kom, n. carbon granule, -lampe, /. carbon lamp, -lichtbogen, m. Elec.) carbon arc. [Pg.250]

A mixture of both possible ketones results when an unsymmetrically substituted internal alkyne (RC=CR ) is hydrated. The reaction is therefore most useful when applied to a terminal alkyne (RC=CH) because only a methyl ketone is formed. [Pg.266]

The hydroboration/oxidation sequence is complementary to the direct, mercury(ll)-catalyzed hydration reaction of a terminal alkyne because different products result. Direct hydration with aqueous acid and mercury(IJ) sulfate leads to a methyl ketone, whereas hydroboration/oxidation of the same terminal alkyne leads to an aldehyde. [Pg.267]

Strategy What is an immediate precursor of a primary alcohol " Perhaps a terminal alkene, which could be hydrated with non-Markovnikov regiochemistiy by reaction with borane Followed by oxidation with H2O2-... [Pg.277]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

I Methyl ketones are prepared by hydration of terminal alkvnes in the presence of Hg2+ catalyst (Section 8.4). [Pg.700]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

On the basis of these results and Damiano s report [28], Darcel et al. described an iron-catalyzed hydration of terminal alkynes using catalytic amounts of iron(III) chloride (10 mol%). The reaction selectively leads to the corresponding methyl ketone derivatives (Scheme 11) [29]. Iron(II) species such as FeCl2 or Fe(OAc)2 were not able to promote the reaction, the starting phenylacetylene remained unchanged after several days at 75°C. [Pg.9]

Scheme 11 Iron chloride-catalyzed hydration of terminal alkynes... Scheme 11 Iron chloride-catalyzed hydration of terminal alkynes...
Experiments with terminal acetylenes, isolation of an intermediate acetal, alkyne hydratation studies, and ab initio calculations provide substantiation of a unified mechanism that rationalizes the reactions in which the complex formation between the alkyne and the iron(III) halides is the activating step (Scheme 12) [27]. [Pg.9]

These considerations apply also to the fluorotelomer alcohol CF3(CF2)7-CH2CH20H that was degraded in a mixed cnltnre obtained by enrichment with ethanol. Terminal dehydrogenation followed by elimination of flnoride, hydration and further loss of fluoride produced perfluorooctanoate (Dinglasan et al. 2004). [Pg.382]

The intermolecular hydration of allenes catalysed by [AuCl(lPr)]/AgOTf (1 1,5 mol%) in dioxane/waler at room temperature, has also been studied. In most cases, low to modest yields (25-65%) of fi-aUylic alcohols were obtained by selective addition of the water to the terminal C atom of the aUene group [89]. [Pg.47]

Efficient anti-Markonikov addition of water to terminal olefins producing primary alcohols would be one of the most desirable catalytic processes (Eq. 6.45). As one example of such a reaction, Jensen and Trogler reported the anti-Markonikov hydration of terminal olefins catalyzed by a platinum(II) trimethylphosphine complex producing primary alcohols [83]. The report, however, was claimed to be of doubtful reproducibility [84]. [Pg.199]

Hydration of unactivated alkynes is an important method for functionalizing this plentiful hydrocarbon source. Therefore, a variety of metal ions have been proposed as catalysts for this reaction, and almost all of the reported additions of water to terminal alkynes follow the Markonikov rule. The hydration of l-aUcynes with Hg(II) salts in sulfuric acid [85], RuCh/aq.HCl [86, 87], K[Ru (edta-H)Cl] 2H20 [88], RhCl,.3H20/aq. HCl [89], RhCl3/NR4 [90], Zeise-type Pt(II) complexes [91-93], and NaAuCl4 [94] produced exclusively methyl ketones (Eq. 6.46). [Pg.199]


See other pages where Hydration termination is mentioned: [Pg.403]    [Pg.245]    [Pg.391]    [Pg.7]    [Pg.573]    [Pg.346]    [Pg.381]    [Pg.527]    [Pg.605]    [Pg.20]    [Pg.231]    [Pg.177]    [Pg.137]    [Pg.221]    [Pg.423]    [Pg.233]    [Pg.248]    [Pg.47]    [Pg.179]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



© 2024 chempedia.info