Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin Heck reaction

In 1991 at the Central Research Laboratories of Hoechst AG we became interested in the palladium-catalyzed olefination (Heck reaction) of aryl halides and aryl diazonium compounds which is arguably one of the most powerfiil methods for the synthesis of substituted olefins. In collaboration with Herrmann and co-workers we have shown that active catalyst mixtures obtained by using in situ mixtures of Pd(II) salts and commercially available tri-o-tolylphosphine consist under the conditions of the Heck reaction primarily of cyclometaUated paUadacycles l... [Pg.3]

PaHadium-cataly2ed coupling reactions have important synthetic appHcations (210—212). The prototypical reaction is the Heck reaction (213) whereby an organoPd(II) undergoes coupling with an olefin (eq. 11). [Pg.183]

To date a number of reactions have been carried out in ionic liquids [for examples, see Dell Anna et al. J Chem Soc, Chem Commun 434 2002 Nara, Harjani and Salunkhe Tetrahedron Lett 43 1127 2002 Semeril et al. J Chem Soc Chem Commun 146 2002 Buijsman, van Vuuren and Sterrenburg Org Lett 3 3785 2007]. These include Diels-Alder reactions, transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell and Ganesan [Org Lett 4 3071 2002]. [Pg.77]

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

The Heck reaction is considered to be the best method for carbon-carbon bond formation by substitution of an olefinic proton. In general, yields are good to very good. Sterically demanding substituents, however, may reduce the reactivity of the alkene. Polar solvents, such as methanol, acetonitrile, N,N-dimethylformamide or hexamethylphosphoric triamide, are often used. Reaction temperatures range from 50 to 160 °C. There are various other important palladium-catalyzed reactions known where organopalladium complexes are employed however, these reactions must not be confused with the Heck reaction. [Pg.158]

An important virtue of the Heck reaction is that it can be applied with much success to essentially every type of olefin, although electron-deficient olefins are particularly well-suited. Moreover, the Heck reaction tolerates a variety of functional groups, and often does not require rigorous exclusion of oxygen and water.llb In fact, many alkene arylations proceed very efficiently in water.14... [Pg.568]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

Another methodology that is widely used for C-C bond formation is the Heck coupling (Heck, 1985 T.suji, 1995). The Heck reaction involves the palladium-catalysed arylation of olefinic double bonds (Eqn. (12)) and provides an alternative to Friedel-Crafts reactions for attaching carbon fragments to aromatic rings. [Pg.41]

Nanometer size Pd colloids in block copolymer micelles of polystyrene polyvinylpyridine as catalysts have been used is a novel way by Klingelhofer for Heck reaction of C-C coupling of aryl halides with olefins. [Pg.149]

Thus, [HRh(C0)(TPPTS)3]/H20/silica (TPPTS = sodium salt of tri(m-sulfophenyl)phopshine) catalyzes the hydroformylation of heavy and functionalized olefins,118-122 the selective hydrogenation of a,/3-unsaturated aldehydes,84 and the asymmetric hydrogenation of 2-(6 -methoxy-2 -naphthyl)acrylic add (a precursor of naproxen).123,124 More recently, this methodology was tested for the palladium-catalyzed Trost Tsuji (allylic substitution) and Heck (olefin arylation) reactions.125-127... [Pg.455]

The selectivity in the Heck reaction of allylic alcohol 111 is interesting, and the factors that lead to the observed preference for (3-hydride elimination toward nitrogen in this system are unclear, although a combination of steric effects and stereoelectronic factors (i.e., alignment of C-H and C-Pd bonds, nN a c H interactions) is likely involved. Examination of related examples from the literature (Scheme 4.20) reveals no clear trend. Rawal and Michoud examined substrate 115, which lacks the influence of both the amine and hydroxyl substituents and also seems to favor (3-hydride elimination within the six-membered ring over formation of the exocyclic olefin under standard Heck conditions [18a]. However, under... [Pg.88]

Palladium catalyzed reaction of aryl halides and olefins provide a useful synthetic method for C-C bond formation reaction [171, 172], The commonly used catalyst is palladium acetate, although other palladium complexes have also been used. A sol-vent-free Heck reaction has been conducted in excellent yields using a household MW oven and palladium acetate as catalyst and triethylamine as base (Scheme 6.51) [173], A comparative study revealed that the longer reaction times and deployment of high pressures, typical of classical heating method, are avoided using this MW procedure. [Pg.209]

The Heck reaction, a palladium-catalyzed vinylic substitution, is conducted with olefins and organohalides or pseudohalides are frequently used as reactants [15, 16], One of the strengths of the method is that it enables the direct monofunctionalization of a vinylic carbon, which is difficult to achieve by other means. Numerous elegant transformations based on Heck chemistry have been developed in natural and non-natural product synthesis. Intermolecular reactions with cyclic and acyclic al-kenes, and intramolecular cyclization procedures, have led to the assembly of a variety of complex and sterically congested molecules. [Pg.381]

Palladium-catalyzed arylation of olefins and the analogous alkenylation (Heck reaction) are the useful synthetic methods for carbon-carbon bond formation.60 Although these reactions have been known for over 20 years, it was only in 1989 that the asymmetric Heck reaction was pioneered in independent work by Sato et al.60d and Carpenter et al.61 These scientists demonstrated that intramolecular cyclization of an alkenyl iodide or triflate yielded chiral cyclic compounds with approximately 45% ee. The first example of the intermolecular asymmetric Heck reaction was reported by Ozawa et al.60c Under appropriate conditions, the major product was obtained in over 96% ee for a variety of aryl triflates.62... [Pg.471]

The Heck reaction, first disclosed by the Mori and Heck groups in the early 1970s [65, 66], is the Pd-catalyzed coupling reaction of organohalides (or triflates) with olefins. Nowadays, it has become an indispensable tool for organic chemists. Inevitably, many applications to heterocyclic chemistry have been pursued and successfully executed. In one case, Ohta et al. reacted 2-chloro-3,6-dimethylpyrazine (49) with styrene to furnish ( )-2,5-dimethyl-3-styrylpyrazine (50) [67]. Here, only the E isomer was observed. The outcome will become apparent during the ensuing discussions on the mechanism. [Pg.14]

While the transmetalation step is often the rate-determining step for Pd-catalyzed reactions with organometallics, the oxidative addition step is often the rate-determining step in the Heck reactions, although olefin insertion can be rate-limiting in some cases — this is why the Heck reactions of tri- and tetra-substituted olefins sometimes proceed slower than those of di-substituted and terminal olefins. [Pg.15]

Whereas Hegedus [335] and Danishefsky [336] were the first to discover a tandem Heck reaction from o-allyl-A -acryloylanilines leading to tricyclic pyrrolo[l,2-a]indoles or pyridino[l,2-a]indoles [336], it has been the fantastic work of Grigg to unleash the enormous potential of this chemistry. Grigg and his co-workers parlayed their Pd-catalyzed tandem polycyclization-anion capture sequence into a treasure trove of syntheses starting with IV-allyl-o-haloanilines [337-345], Diels-Alder and olefin metathesis reactions can be interwoven into the sequence or can serve as the culmination step, as can a wide variety of nucleophiles. An example of the transformation of 289 to 290 is shown below in which indole is the terminating nucleophile [340],... [Pg.138]

Generally, the intermolecular Heck reaction between 2-iodo-, 4-iodo- and 5-iodo-l-methylimidazoles and olefins suffers from low yields (< 25%). Therefore, these transformations are of limited synthetic utility [29]. In one case, variable yields for adduct 62 (15-58%) were observed for the Heck reaction of 5-bromo-l-methyl-2-phenylthio-lf/-imidazole (61) and a large excess of methyl acrylate [42]. [Pg.347]

Analogous to simple carbocyclic aryl halides, 5-halopyrimidines readily take part in Pd-catalyzed olefinations under standard Heck conditions. In a simple case, Yamanaka et aL synthesized ethyl 2,4-dimethyl-5-pyrimidineacrylate (102) via the Heck reaction of 5-iodo-2,4-dimethylpyrimidine and ethyl acrylate [70]. [Pg.395]

Intermolecular, enantioselective Heck reactions require a cyclic olefin as substrate, since syn carbopal-ladation of a cyclic olefin results in a geometrically defined a-alkyl-palladium compound. By necessity, the subsequent syn dehydropalladation must take place away from the newly formed chiral centre, thereby affording a chiral product. [Pg.104]

Reactions of aryllead triacetates with olefins (Heck-type reactions) proceed similarly but do not require Cul as co-catalyst. From the numerous reported reactions, that of phenyllead triacetate with 2,3-dihydrofuran is mentioned as a typical example. This affords the C-C coupling product 27 in 68% yield, together with 10% of the homocoupling product (Equation (ll)).47... [Pg.889]

As shown in the previous sections, a (cr-allenyl)palladium species, which is formed from a propargyl electrophile and a Pd(0) catalyst, reacts with a hard carbon nucleophile in a manner analogous to the Pd-catalyzed cross-coupling reaction to give a substituted allene. The results indicate that the reactivity of the (cj-allenyl)palladium species is similar to that of an alkenylpalladium intermediate. Indeed, it was found that the (cr-allenyl)palladium species reacted with olefins to give vinylallenes, a reaction process that is similar to that of the Heck reaction of alkenyl halides [54]. [Pg.102]


See other pages where Olefin Heck reaction is mentioned: [Pg.34]    [Pg.1137]    [Pg.34]    [Pg.1137]    [Pg.136]    [Pg.154]    [Pg.607]    [Pg.567]    [Pg.198]    [Pg.147]    [Pg.161]    [Pg.203]    [Pg.38]    [Pg.72]    [Pg.233]    [Pg.1329]    [Pg.1336]    [Pg.19]    [Pg.513]    [Pg.89]    [Pg.182]    [Pg.714]    [Pg.504]    [Pg.315]    [Pg.318]    [Pg.395]    [Pg.396]    [Pg.1]    [Pg.89]   
See also in sourсe #XX -- [ Pg.775 ]




SEARCH



Arene Olefination (Oxidative Heck Reaction)

Heck olefinations

Heck reaction of olefin

Heck reaction, olefin arylation

Olefin reactions

Olefination of Aryl Halides (Mizoroki-Heck Reaction)

Olefination reactions

Olefinations Heck reactions

Olefinations Heck reactions

© 2024 chempedia.info