Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin Definition

Attention should be paid to the fact that the ratio of Pd and phosphine ligand in active catalysts is crucial for determining the reaction paths. It is believed that dba is displaced completely with phosphines when Pd2(dba)3 is mixed with phosphines in solution. However the displacement is not eom-plcte[16]. Also, it should be considered that dba itself is a monodentate alkene ligand, and it may inhibit the coordination of a sterically hindered olefinic bond in substrates. In such a case, no reaction takes place, and it is recommended to prepare Pd(0) catalysts by the reaction of Pd(OAc)2 with a definite amount of phosphinesflO]. In this way a coordinatively unsaturated Pd(0) catalyst can be generated. Preparation of Pd3(tbaa)3 tbaa == tribenzylidene-acetylacetone) was reported[17], but the complex actually obtained was Pd(dba)2[l8],... [Pg.3]

The difference between RON and MON for a particular fuel is called the sensitivity. By definition, the RON and MON of the primary reference fuels are the same and the sensitivity is 2ero. For all other fuels, the sensitivity is almost always greater than 2ero. Generally, paraffins have low sensitivities whereas olefins and aromatics have sensitivities ranging up to 10 and higher. [Pg.181]

When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

Although beyond the scope of the present discussion, another key realization that has shaped the definition of click chemistry in recent years was that while olefins, through their selective oxidative functionalization, provide convenient access to reactive modules, the assembly of these energetic blocks into the final structures is best achieved through cydoaddition reactions involving carbon-het-eroatom bond formation, such as [l,3]-dipolar cydoadditions and hetero-Diels-Al-der reactions. The copper(i)-catalyzed cydoaddition of azides and terminal alkynes [5] is arguably the most powerful and reliable way to date to stitch a broad variety... [Pg.445]

The catalysts that allow the production of maleic anhydride from n-butane with high selectivity, like (V0)2P207, are characterized by a strong acidity, that, like a strong basicity, favors the decomposition of alkoxides to give the olefin and the diene. The catalysts that allow the production of maleic anhydride, either from n-butane or from butenes and butadiene, necessarily have particular sites that allow the insertion of oxygen atoms in the 1,4-position of butadiene. These sites are definitely absent on combustion catalysts. [Pg.490]

TS-1 is a material that perfectly fits the definition of single-site catalyst discussed in the previous Section. It is an active and selective catalyst in a number of low-temperature oxidation reactions with aqueous H2O2 as the oxidant. Such reactions include phenol hydroxylation [9,17], olefin epoxida-tion [9,10,14,17,40], alkane oxidation [11,17,20], oxidation of ammonia to hydroxylamine [14,17,18], cyclohexanone ammoximation [8,17,18,41], conversion of secondary amines to dialkylhydroxylamines [8,17], and conversion of secondary alcohols to ketones [9,17], (see Fig. 1). Few oxidation reactions with ozone and oxygen as oxidants have been investigated. [Pg.40]

The reaction of carbonyl compounds to olefins often yields products difficult to obtain synthetically by other routes. The excellent yields obtainable under proper conditions make this reaction of definite preparative interest. Examples of some synthetic applications of oxetane formation follow ... [Pg.100]

The most famous mechanism, namely Cossets mechanism, in which the alkene inserts itself directly into the metal-carbon bond (Eq. 5), has been proposed, based on the kinetic study [134-136], This mechanism involves the intermediacy of ethylene coordinated to a metal-alkyl center and the following insertion of ethylene into the metal-carbon bond via a four-centered transition state. The olefin coordination to such a catalytically active metal center in this intermediate must be weak so that the olefin can readily insert itself into the M-C bond without forming any meta-stable intermediate. Similar alkyl-olefin complexes such as Cp2NbR( /2-ethylene) have been easily isolated and found not to be the active catalyst precursor of polymerization [31-33, 137]. In support of this, theoretical calculations recently showed the presence of a weakly ethylene-coordinated intermediate (vide infra) [12,13]. The stereochemistry of ethylene insertion was definitely shown to be cis by the evidence that the polymerization of cis- and trans-dideutero-ethylene afforded stereoselectively deuterated polyethylenes [138]. [Pg.19]

Another pertinent observation is the fact that the reaction proceeded twice as fast in -butyraldehyde (polar) as in benzene (nonpolar), even though the catalyst concentration was reduced to only one-third the comparable level. A graphic illustration of this effect is given in Fig. 9. The rate of gas uptake is plotted as a function of time for a reaction conducted in benzene and again for a second reaction conducted in butyraldehyde. The rate of reaction in the polar solvent was initially fast and decreased with time. The rate in the nonpolar benzene was initially slow, became faster as the solvent became more polar with the presence of product aldehyde, and then subsequently diminished with time. When the data were replotted as the log of unreacted olefin vs. time, the polar medium reaction showed first-order dependence on olefin concentration, whereas the nonpolar solvent reaction showed no definite order, owing to the constantly changing polarity. [Pg.29]

Stereospecificity as applied to olefin metathesis may be considered in two ways (a) How does the cis/trans isomer ratio of a product olefin compare with its equilibrium ratio, or (b) how does this cis/trans value differ from 1.0, which is the statistically expected value in terms of probabilities. In the present discussion, the latter definition applies. [Pg.468]

Another, very notable, case where the two definitions are in conflict is that of het-eroannular cisoid dienes. As we have mentioned, this was just the class of molecules that stimulated the introduction of the AAR. Here, in order to have the correct results one should refer the chirality of the axial substituent to the individual double bonds (olefin-picture), as depicted in Figure 6 and in the upper parts of Figure 7(b) and (c). The case of heteroannular dienes is anyway peculiar, because in these compounds the chromophore is unusually distorted. This case is treated in the following section. [Pg.126]

The angle 6 is defined according to Scheme 2, the exact definitions of the angles in the last column, describing the double bond torsion, being given in Reference 38. Here we note only that 0 ° torsion means a planar olefin. The values are reported only for dimethyl-substituted double bonds. [Pg.129]

There is also a certain amount of statistical information available on the failures of process system components. Arulanantham and Lees (1981) have studied pressure vessel and fired heater failures in process plants such as olefins plants. They define failure as a condition in which a crack, leak or other defect has developed in the equipment to the extent that repair or replacement is required, a definition which includes some of the potentially dangerous as well as all catastrophic failures. The failure rates of equipment are related to some extent to the safety of process items. If a piece of equipment has a long history of failures, it may cause safety problems in the future. Therefore it would be better to consider another equipment instead. It should be remembered that all reliability or failure information does not express safety directly, since all failures are not dangerous and not all accidents are due to failures of equipment. [Pg.56]

It is considered that Tables 1-4 contain most of those systems for which it has been definitely established whether the chaincarriers are ionic or non-ionic if any have been overlooked, they cannot be numerous. The operative word here is definitely . No doubt, ideas as to what constitutes proof in this domain vary from one worker to another, and also with time. There are very many systems for which an ionic chain-carrier seems at present the only reasonable hypothesis, but in this context it is essential to recall that not very long ago the only reasonable reaction between perchloric acid and styrene appeared to be protonation of the olefin ... [Pg.632]

In this chapter, theoretical studies on various transition metal catalyzed boration reactions have been summarized. The hydroboration of olefins catalyzed by the Wilkinson catalyst was studied most. The oxidative addition of borane to the Rh metal center is commonly believed to be the first step followed by the coordination of olefin. The extensive calculations on the experimentally proposed associative and dissociative reaction pathways do not yield a definitive conclusion on which pathway is preferred. Clearly, the reaction mechanism is a complicated one. It is believed that the properties of the substrate and the nature of ligands in the catalyst together with temperature and solvent affect the reaction pathways significantly. Early transition metal catalyzed hydroboration is believed to involve a G-bond metathesis process because of the difficulty in having an oxidative addition reaction due to less available metal d electrons. [Pg.210]

The fuel oils coming out of olefin plants are also characterized by an abundance of polynuclear aromatic molecules, (Same definition as for Figure 2—1). They are sometimes inaccurately referred to as having a high aromatics content. Nomenclature aside, because of this, the burning characteristics of pyrolysis gas oil and pyrolysis pitch are poor. They are smoky, sooty, and gum formers they rend to be more viscous, and because of their polynuclear aromatic concent, they are suspected carcinogens. They are basically a witchs brew of unsavory hydrocarbons.. ... [Pg.74]


See other pages where Olefin Definition is mentioned: [Pg.88]    [Pg.687]    [Pg.571]    [Pg.614]    [Pg.14]    [Pg.15]    [Pg.235]    [Pg.127]    [Pg.14]    [Pg.519]    [Pg.424]    [Pg.97]    [Pg.34]    [Pg.238]    [Pg.193]    [Pg.194]    [Pg.200]    [Pg.212]    [Pg.291]    [Pg.382]    [Pg.96]    [Pg.380]    [Pg.17]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Olefin metathesis definition

© 2024 chempedia.info