Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Obtaining potassium hydroxide

KOH can be purchased, or you can make it yourself if you have a source of hard wood ashes. The making of lye used to be a common chore in most households. If you are interested in this, the e-book Build Your Own Fuel Cells contains complete illustrated instructions for making KOH from woodash. [Pg.121]

Whether you purchase KOH from a chemical supply house, or make it k yourself, the following table will be helpful. If you make KOH yourself, use the table to determine the specific gravity of the solution when you take a hydrometer reading. This will indicate whether to boil the solution down to strengthen it, or add more distilled water to weaken it. [Pg.121]


After 40 or 50 minutes of electrolysis, switch off the current and determine the concentration of the obtained potassium hydroxide solution by titration. [Pg.188]

This reaction has been carefully studied with the aim of obtaining the enthalpy of combustion as electrical energy, and successful hydrazine-air fuel cells have been developed using potassium hydroxide as the electrolyte. The hydrazine fuel, however, has the disadvantage that it is expensive and poisonous. [Pg.224]

Since the silver salts of the carboxylic acids are usually soluble in dilute nitric acid, they must be prepared by treating an aqueous solution of a neutral salt of the acid (and not the free acid itself) with silver nitrate solution. It is not practicable to attempt to neutralise the acid with sodium or potassium hydroxide solution, because the least excess of alkali would subsequently cause the white silver salt to be contaminated with brown silver oxide. The general method used therefore to obtain a neutral solution j to dissolve the acid in a small excess of ammonia solution, and then to boil the solution until all free... [Pg.445]

The molecular weight of many carboxylic acids which arc freely soluble in cold water (i.e., chiefly the aliphatic acids) can readily be obtained by titrating a known weight of the acids in aqueous solution with standard sodium or potassium hydroxide solution, using phenolphthalein as an indicator. To avoid the use of unduly large quantities of the acid, it is advisable to use Mj2 caustic alkali solution, and in order to obtain a sharp end>point, this alkali solution... [Pg.447]

Ammonia is conveniently obtained from a cylinder of the Uquefled gas the cylinder must be equipped with a reducing valve. The rate of flow of the gas may be determined by passage through a bubble counter containing a small volume of concentrated potassium hydroxide solution (12 g. of KOH in 12 ml. of water). A safety bottle should be inserted between the cylinder and the reaction vessel. [Pg.184]

Undecylenic acid (or 10-undecenoic acid) (I), a comparatively inexpensive commercial product obtained from castor oil, reacts with bromine in dry carbon tetrachloride to give 10 11-dibromoundecoic acid (II), which upon heating with a concentrated solution of potassium hydroxide yields 10-niidecynoic acid (III) ... [Pg.468]

Wolff - Kishner reduction of aldehydes and ketones. Upon heating the hydrazoiie or semicarbazone of an aldehyde or ketone with potassium hydroxide or with sodium ethoxide solution (sealed tube), the corresponding hydrocarbon is obtained ... [Pg.510]

No cresol is obtained if sodium hydroxide alone is used, presumably because the fused sodium hydroxide has no solvent action upon the sodium p-toluene-sulphonate. Potassium hydroxide alone gives excellent results, as do also mixtures of Sodium and potassium hydroxide containing not less than 28 per cent, of potassium hydroxide. The experimental details utilise the minimum amount of potassium hydroxide for the salce of economy. [Pg.667]

Trimethylene dibromide (1 mol) condenses with ethyl malonate (1 mol) in the presence of sodium ethoxide (2 mols) to form ethyl cydobutane-1 1-dksrboxylate (I). Upon hydrolysis of the latter with alcoholic potassium hydroxide, followed by acidification cyciobutane-1 1-dicarboxylic acid (II) is obtained. [Pg.857]

It is of interest to note that by substituting alkyl bromides for cyciohexyl bromide the corresponding a-phenyl-a-alkyl-acetonitriles are obtained, which may be hydrolysed to the a-phenylaliphatic acids thus with ethyl iodide a-phenyl-lwt3Tonitrile is produced, hydrolysed by ethanoUo potassium hydroxide to a-phenylbutyric acid. [Pg.897]

Method B. For some purposes a shghtly more active catalyst is obtained when it is prepared in more concentrated solutions. The procedure is the same as above, but the volumes of solution for 5 g. of metal are dilute acid, 25 ml. formaldehyde, 35 ml. potassium hydroxide, 32 g. in 32 ml. of water. [Pg.948]

If alcoholic potassium hydroxide is added to an ethereal solution of the methyl-nitrosamide and the mixture distilled, an ethereal solution of diazomethane is obtained in high yield ... [Pg.968]

Dimethylaminomethylindole (gramine). Cool 42 5 ml. of aqueous methylamine solution (5 2N ca. 25 per cent, w/v) contained in an 100 ml. flask in an ice bath, add 30 g. of cold acetic acid, followed by 17 -2 g. of cold, 37 per cent, aqueous formaldehyde solution. Pour the solution on to 23 -4 g. of indole use 10 ml. of water to rinse out the flask. Allow the mixture to warm up to room temperature, with occasional shaking as the indole dissolves. Keep the solution at 30-40° overnight and then pour it, with vigorous stirring, into a solution of 40 g. of potassium hydroxide in 300 ml. of water crystals separate. Cool in an ice bath for 2 hours, collect the crystalline solid by suction flltration, wash with three 50 ml. portions of cold water, and dry to constant weight at 50°. The yield of gramine is 34 g. this is quite suitable for conversion into 3-indoleacetic acid. The pure compound may be obtained by recrystaUisation from acetone-hexane m.p. 133-134°. [Pg.1013]

Ethynylation of ketones is not cataly2ed by copper acetyUde, but potassium hydroxide has been found to be effective (180). In general, alcohols are obtained at lower temperatures and glycols at higher temperatures. Most processes use stoichiometric amounts of alkaU, but tme catalytic processes for manufacture of the alcohols have been described the glycols appear to be products of stoichiometric ethynylation only. [Pg.112]

A Hquid-phase isophorone process is depicted ia Figure 4 (83). A mixture of acetone, water, and potassium hydroxide (0.1%) are fed to a pressure column which operates at head conditions of 205°C and 3.5 MPa (- 500 psi). Acetone condensation reactions occur on the upper trays, high boiling products move down the column, and unreacted acetone is distilled overhead ia a water—acetone a2eotrope which is recycled to the column as reflux. In the lower section of the column, water and alkaH promote hydrolysis of reaction by-products to produce both isophorone and recyclable acetone. Acetone conversion is typically ia the range 6—10% and about 70% yield of isophorone is obtained. Condensation—hydrolysis technology (195—198), and other Hquid-phase production processes have been reported (199—205). [Pg.494]

Alkanolamines can be oxidized with various oxidiziag agents. With acidic potassium permanganate or excess potassium hydroxide, the potassium salts of the corresponding amino acid are obtained... [Pg.7]

Semichemical pulping can be accompHshed by a sulfur-free system of sodium hydroxide and sodium carbonate. The sodium carbonate is recovered by simple incineration, and sodium hydroxide is added as makeup. Advantages in recovery operation are obtained if potassium hydroxide is added occasionally to maintain ca 20 mol % potassium carbonate (66). Lastiy, semichemical pulping can be accompHshed by using kraft white Hquor of low strength. [Pg.275]

Reaction of olefin oxides (epoxides) to produce poly(oxyalkylene) ether derivatives is the etherification of polyols of greatest commercial importance. Epoxides used include ethylene oxide, propylene oxide, and epichl orohydrin. The products of oxyalkylation have the same number of hydroxyl groups per mole as the starting polyol. Examples include the poly(oxypropylene) ethers of sorbitol (130) and lactitol (131), usually formed in the presence of an alkaline catalyst such as potassium hydroxide. Reaction of epichl orohydrin and isosorbide leads to the bisglycidyl ether (132). A polysubstituted carboxyethyl ether of mannitol has been obtained by the interaction of mannitol with acrylonitrile followed by hydrolysis of the intermediate cyanoethyl ether (133). [Pg.51]

Hydrated Stannic Oxide. Hydrated stannic oxide of variable water content is obtained by the hydrolysis of stannates. Acidification of a sodium stannate solution precipitates the hydrate as a flocculent white mass. The colloidal solution, which is obtained by washing the mass free of water-soluble ions and peptization with potassium hydroxide, is stable below 50°C and forms the basis for the patented Tin Sol process for replenishing tin in staimate tin-plating baths. A similar type of solution (Staimasol A and B) is prepared by the direct electrolysis of concentrated potassium staimate solutions (26). [Pg.66]

Polyether Polyols. Polyether polyols are addition products derived from cyclic ethers (Table 4). The alkylene oxide polymerisation is usually initiated by alkah hydroxides, especially potassium hydroxide. In the base-catalysed polymerisation of propylene oxide, some rearrangement occurs to give aHyl alcohol. Further reaction of aHyl alcohol with propylene oxide produces a monofunctional alcohol. Therefore, polyether polyols derived from propylene oxide are not truly diftmctional. By using sine hexacyano cobaltate as catalyst, a more diftmctional polyol is obtained (20). Olin has introduced the diftmctional polyether polyols under the trade name POLY-L. Trichlorobutylene oxide-derived polyether polyols are useful as reactive fire retardants. Poly(tetramethylene glycol) (PTMG) is produced in the acid-catalysed homopolymerisation of tetrahydrofuran. Copolymers derived from tetrahydrofuran and ethylene oxide are also produced. [Pg.347]

Vinyl chloride reacts with sulfides, thiols, alcohols, and oximes in basic media. Reaction with hydrated sodium sulfide [1313-82-2] in a mixture of dimethyl sulfoxide [67-68-5] (DMSO) and potassium hydroxide [1310-58-3], KOH, yields divinyl sulfide [627-51-0] and sulfur-containing heterocycles (27). Various vinyl sulfides can be obtained by reacting vinyl chloride with thiols in the presence of base (28). Vinyl ethers are produced in similar fashion, from the reaction of vinyl chloride with alcohols in the presence of a strong base (29,30). A variety of pyrroles and indoles have also been prepared by reacting vinyl chloride with different ketoximes or oximes in a mixture of DMSO and KOH (31). [Pg.414]

For the manufacturiag of potassium ethyl xanthate, 400% excess of alcohol and equimolar quantities of 50 wt % aqueous potassium hydroxide and carbon disulfide were used (77). After 30 min at 40°C, the mixture was vacuum dmm dried. The product was obtained ia near quantitative yield and assayed at 95%. It is claimed that potassium amyl xanthate can be made with almost the same ratio of reactants and 80 wt % caustic potash (78). [Pg.366]

Prior to the commercial development of this process benzyl alcohol was obtained from benzaldehyde [100-52-7] which undergoes the Cannizzaro reaction (2) upon treatment with potassium hydroxide. High yields of benzyl alcohol and potassium benzoate are obtained by this route which cannot compete with the present day process because of the high cost of benzaldehyde (qv). [Pg.60]


See other pages where Obtaining potassium hydroxide is mentioned: [Pg.121]    [Pg.121]    [Pg.28]    [Pg.177]    [Pg.392]    [Pg.469]    [Pg.488]    [Pg.568]    [Pg.639]    [Pg.715]    [Pg.812]    [Pg.917]    [Pg.931]    [Pg.955]    [Pg.975]    [Pg.1062]    [Pg.121]    [Pg.573]    [Pg.146]    [Pg.460]    [Pg.504]    [Pg.28]    [Pg.70]    [Pg.380]    [Pg.522]    [Pg.292]    [Pg.526]   


SEARCH



Hydroxides Potassium hydroxide

Potassium hydroxide

© 2024 chempedia.info