Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

O-H Insertions

Thermolysis of 58a in butanol affords, together with 17% of 60a (R = C4H9) which evidences the intermediacy of the thiophosphene 59 a, a variety of partly atypical products which seriously impede the desired rearrangement38. Photolysis of 58b in methanol is also found to give only 18 % 1,2-P/C shift to form the heterocumulene 59b, from which the thiophosphinic rater 60b (R = CH3) results 39). As already mentioned in connection with the photolysis of diazo compounds of type 36 (see Sect. 2.2), Wolff rearrangement (9%) and O/H insertion (6%) once again compete with thiophosphinic ester formation. Moreover, solvolysis of the P(S)/C(N2) bond 391 prevents a greater contribution of carbene products to the overall yield. [Pg.87]

Copper(II) triflate is quite inefficient in promoting cyclopropanation of allyl alcohol, and the use of f-butyl diazoacetate [164/(165+166) = 97/3%] brought no improvement over ethyl diazoacetate (67/6 %)162). If, however, copper(I) triflate was the catalyst, cyclopropanation with ethyl diazoacetate increased to 30% at the expense of O/H insertion (55%). As has already been discussed in Sect. 2.2.1, competitive coordination-type and carbenoid mechanisms may be involved in cyclopropanation with copper catalysts, and the ability of Cu(I) to coordinate efficiently with olefins may enhance this reaction in the intramolecular competition with O/H insertion. [Pg.143]

Olefinic alcohols other than allyl alcohol display a preference for O/H insertion which is quite similar to that of the latter and rather independent of the particular compound 162). Relative reactivity studies show, however, that an allylic O—H bond reacts faster than a non-allylic one, and that steric hindrance slows... [Pg.143]

Exclusive O/H insertion takes place in the Rh2(OAc)4-catalyzed reaction of diethyl diazomalonate with a,(J-unsaturated y-hydroxyesters 167 a-c163). This is not surprising in view of the reluctance of electrophilic metal carbenes to add to electron-poor double bonds (see Sect. 2.3.2). However, the more electron-rich double bond of p-methoxybenzyl clavulanate 168 also cannot compete with the O—H function for the same carbenoid 164). The steric situation at the trisubstituted double bonds of 167 and 168 may be reason enough to render an attack there highly unfavorable as compared to the easily accessible O—H function, no matter how nucleophilic the double bond is. [Pg.144]

Reaction of propargylic alcohols 229 with alkyl diazoacetates entails competition between O/H insertion and cyclopropenation. [Pg.175]

Under the catalytic action of Rh2(OAc)4, formation of a propargylic ether from a terminal alkyne (229, R1=H) is preferred as long as no steric hindrance by the adjacent group is felt162,218>. Otherwise, cyclopropenation may become the dominant reaction path [e.g. 229 (R1 = H, R2 = R3 = Me) and methyl diazoacetate 56% of cyclopropene, 36% of propargylic ether162)], in contrast to the situation with allylic alcohols, where O/H insertion is rather insensitive to steric influences. [Pg.175]

Some functionalized thiophenes have been investigated in order to assess the scope of ylide-derived chemistry. As already mentioned, 2-(hydroxymethyl)thiophene still gives the S-ylide upon Rh2(OAe)4-catalyzed reaction with dimethyl diazomalonate 146 but O/H insertion instead of ylide formation seems to have been observed by other workers (Footnote 4 in Ref. 2S4)). From the room temperature reaction of 2-(aminomethyl)thiophene and dimethyl diazomalonate, however, salt 271 was isolated quite unexpectedly 254). Rh2(OAc)4, perhaps deactivated by the substrate, is useless in terms of the anticipated earbenoid reactions. Formation of a diazo-malonic ester amide and amine-catalyzed cyclization to a 5-hydroxytriazole seem to take place instead. [Pg.186]

Synthesis of a-alkoxyketones from a-diazocarbonyl compounds and alcohols under the influence of copper or rhodium catalysts is well established as an alternative to the Lewis or proton acid catalyzed variant of this synthetic transformation. The sole recent contribution to the aspect of general reactivity deals with the competition between O/H insertion and cyclopropanation of unsaturated alcohols 162). The results... [Pg.206]

An interesting application of carbenoid O/H insertion is the synthesis of macrocyclic oxacrown ethers 337 from a,a>-diazoketones 336 and oligoethylene glycols 323). [Pg.207]

Concerning the mechanism of O/H insertion, direct carbenoid insertion, oxonium ylide and proton transfer processes have been discussed 7). A recent contribution to this issue is furnished by the Cu(acac)2- or Rh2(OAc)4-catalyzed reaction of benz-hydryl 6-diazopenicillanate 237) with various alcohols, from which 6a-alkoxypenicil-lanates 339 and tetrahydro-l,4-thiazepines 340 resulted324. Formation of 340 is rationalized best by assuming an oxonium ylide intermediate 338 which then rearranges as shown in the formula scheme. Such an assumption is justified by the observation of thiazepine derivatives in reactions which involved deprotonation at C-6 of 6p-aminopenicillanates 325,326). It is possible that the oxonium ylide is the common intermediate for both 339 and 340. [Pg.208]

Alternatively, diazotization of ethyl indole-2-carboxylate (179) leads to formation of 2-carboethoxy-3-diazo-3H-indole (180) which undergoes rhodium-catalyzed alcohol O-H insertion reactions leading to 3-alkoxyindoles 181 <00TL6905>. [Pg.126]

Suggestive evidence for the protonation of diphenylcarbene was uncovered in 1963.10 Photolysis of diphenyldiazomethane in a methanolic solution of lithium azide produced benzhydryl methyl ether and benzhydryl azide in virtually the same ratio as that obtained by solvolysis of benzhydryl chloride. These results pointed to the diphenylcarbenium ion as an intermediate in the reaction of diphenylcarbene with methanol (Scheme 3). However, many researchers preferred to explain the O-H insertion reactions of diarylcarbenes in terms of electrophilic attack at oxygen (ylide mechanism),11 until the intervention of car-bocations was demonstrated by time-resolved spectroscopy (see Section III).12... [Pg.2]

The reaction of carbenes with alcohols can proceed by various pathways, which are most readily distinguished if the divalent carbon is conjugated to a tt system (Scheme 5). Both the ylide mechanism (a) and concerted O-H insertion (b) introduce the alkoxy group at the originally divalent site. On the other hand, carbene protonation (c) gives rise to allylic cations, which will accept nucleophiles at C-l and C-3 to give mixtures of isomeric ethers. In the case of R1 = R2, deuterated alcohols will afford mixtures of isotopomers. [Pg.4]

The reactions of the vinylcarbenes 7 and 15 with methanol clearly involve delocalized intermediates. However, the product distributions deviate from those of free (solvated) allyl cations. Competition of the various reaction paths outlined in Scheme 5 could be invoked to explain the results. On the other hand, the effect of charge delocalization in allylic systems may be partially offset by ion pairing. Proton transfer from alcohols to carbenes will give rise to carbocation-alkoxide ion pairs that is, the counterion will be closer to the carbene-derived carbon than to any other site. Unless the paired ions are rapidly separated by solvent molecules, collapse of the ion pair will mimic a concerted O-H insertion reaction. [Pg.5]

Tabushi reported that dichlorocarbene CC12 reacts with benzyl alcohol to form an O-H insertion product, i.e., benzyl dichloromethyl ether as the primary product, which undergoes a further base-catalyzed elimination reaction to give benzyl chloride as the final product (Scheme 3, Eq. I).14 In contrast to this... [Pg.289]

Nevertheless, another possibility remained for the formation of insertion products, that they might be formed from the O-H insertion product, e.g., dichloromethyl benzyl ether 5, by the Wittig rearrangement of dichloromethoxy-carbanion 4, (Scheme 5, Eq. I).17 However, treatment of independently prepared benzyl dichloromethyl ether 5 with the same base solely gave benzyl chloride, but the insertion product was not obtained (Eq. 2). Hence, a Wittig-type rearrangement process was excluded. [Pg.290]

Experimental Procedure 4.2.4. Etherification of a Serine Derivative by Intermo-lecular O-H Insertion Methyl (25)-3-[(Ethoxycarbonyl)methoxy]-2-(benzyloxy-carbonylamino)propanoate... [Pg.197]

Intramolecular O-H insertion enables the preparation of 3-8-membered cyclic ethers in high yield [979,1193,1218-1220]. Examples of O-H insertion reactions are given in Tables 4.13 and 4.14. [Pg.197]

Table 4.14. Preparation of ethers by intermolecular O-H insertion of electrophilic carbene complexes. Table 4.14. Preparation of ethers by intermolecular O-H insertion of electrophilic carbene complexes.
Numerous studies have been directed toward expanding the chemistry of the donor/ac-ceptor-substituted carbenoids to reactions that form new carbon-heteroatom bonds. It is well established that traditional carbenoids will react with heteroatoms to form ylide intermediates [5]. Similar reactions are possible in the rhodium-catalyzed reactions of methyl phenyldiazoacetate (Scheme 14.20). Several examples of O-H insertions to form ethers 158 [109, 110] and S-H insertions to form thioethers 159 [111] have been reported, while reactions with aldehydes and imines lead to the stereoselective formation of epoxides 160 [112, 113] and aziridines 161 [113]. The use of chiral catalysts and pantolactone as a chiral auxiliary has been explored in many of these reactions but overall the results have been rather moderate. Presumably after ylide formation, the rhodium complex disengages before product formation, causing degradation of any initial asymmetric induction. [Pg.326]

While the perfluorinated acetates do prefer insertion, they are still capable of forming 1,3-dipoles and have demonstrated interesting effects on the regioselectivity of intramolecular cycloaddition reactions, presumably through Lewis acid-mediated effects on the dipolarophile [83]. Other chemoselectivity effects have been noted in the intramolecular cycloaddition reactions and may or may not be partially induced by conformation and sterics [84]. It was further demonstrated thaL when possible, O-H insertion is the predominant outcome over other types of insertion for rhodium]II)-car-benes, independently of the catalyst. However, cycloaddition reactions have been demonstrated to be hgand-dependent [85]. [Pg.438]

The LFP of diphenyldiazomethane ( DDM ) in a variety of solvents produces triplet diphenylcarbene ( DPC, 14a), whose transient absorption is readily monitored. The optical absorption spectrum of DPC is quenched by methanol and yields the product of O—H insertion, suggesting that DPC is quenched by the O—H bond of methanol. The quenching rate constant (fex) is determined to be 6.8 X 10 M s in benzene. ... [Pg.395]

By analogy with the mechanism proposed for the reaction with alkenes, C—H insertion product formation can be explained in terms of a H abstraction-recombination process of triplet arylcarbenes. The observations that ground-state singlet carbenes, for example, chlorophenylcarbene (67), produce only O—H insertion... [Pg.415]


See other pages where O-H Insertions is mentioned: [Pg.84]    [Pg.84]    [Pg.143]    [Pg.144]    [Pg.207]    [Pg.231]    [Pg.3]    [Pg.22]    [Pg.38]    [Pg.43]    [Pg.44]    [Pg.192]    [Pg.289]    [Pg.294]    [Pg.37]    [Pg.196]    [Pg.326]    [Pg.436]    [Pg.399]    [Pg.434]   
See also in sourсe #XX -- [ Pg.289 , Pg.290 , Pg.294 ]

See also in sourсe #XX -- [ Pg.193 , Pg.196 , Pg.197 , Pg.198 ]




SEARCH



H Insertion

O insertion

© 2024 chempedia.info