Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzyl preparation

It is prepared by the direct chlorination of toluene in the presence of PClj. It is purified by fractionation from the unchanged toluene and the higher chlorinated products. It is used for benzylating amines and for preparing benzyl alcohol. [Pg.57]

In the following preparation, the oxidation of benzyl chloride instead of toluene is therefore given in order to reduce the time required. It should be borne in mind, however, that the procedure is othenvise independent of the nature of the side chain. [Pg.239]

A crystalline derivative of benzyl alcohol cannot be obtained by using benzoyl chloride, because the benzyl benzoate, C HiCOOCHiCaHj, so obtained has m.p. 18°, and is thus usually liquid the present preparation illustrates therefore the use of a substituted benzoyl chloride (p-nitrobenzoyl chloride, m.p. 75°) in order to obtain a crystalline derivative of suitably high m.p. [Pg.246]

Thiourea. Boil in ethanolic solution with benzyl chloride to prepare the crystalline benzylthiouronium chloride, m.p. lyo i 74" (P- 126). [Pg.362]

The excess of alkah is then neutralised with dilute hydrochloric acid (phenolphthalein) and the solution is evaporated to dryness on the water bath. The acid may then be characterised as the S-benzyl-tao-thiuronium salt or as the p-bromophenacyl ester (Section 111,85). In many instances the derivative may be prepared directly from the neutralised solution. [Pg.410]

By-products are formed in both preparations thus in the former, anthracene, and o- and p-dibenzylbenzenes are present in the fraction of high boiling point. Diphenylmethane is more conveniently obtained by the interaction of benzyl chloride and benzene in the presence of aluminium amalgam ... [Pg.509]

The ketones are readily prepared, for example, acetophenone from benzene, acetyl chloride (or acetic anhydride) and aluminium chloride by the Friedel and Crafts reaction ethyl benzyl ketones by passing a mixture of phenylacetic acid and propionic acid over thoria at 450° and n-propyl- p-phenylethylketone by circulating a mixture of hydrocinnamic acid and n-butyric acid over thoria (for further details, see under Aromatic Ketones, Sections IV,136, IV,137 and IV,141). [Pg.510]

Prepare a solution of benzyl magnesium chloride in a 2-litre three-necked flask from 24-3 g. of magnesium turnings, 600 ml. of sodium-dried ether and 126-5 g. (115 ml.) of redistilled benzyl chloride follow the experimental details given under n-Propylbenzene (Section IV,7). Cool the flask in running water or in ice water. Place a solution of 456 g. of n-butyl-p-toluenesulphonate (Section IV,198) in about twice its volume of anhydrous ether in the dropping funnel, and add it slowly with stirring, at such a rate that the ether just boils a white solid soon forms. The addition is complete after about 2 hours. Pour the reaction product... [Pg.517]

P-Phenylethylamine is conveniently prepared by the hydrogenation under pressure of benzyl cyanide with Raney nickel catalyst (see Section VI,5) in the presence of either a saturated solution of dry ammonia in anhydrous methyl alcohol or of liquid ammonia the latter are added to suppress the formation of the secondary amine, di- P phenylethylamine ... [Pg.560]

P-Phenylethylamine. Prepare p-phenylethyl phthalimide as above by substituting P phenylethyl bromide (Section 111,37) for benzyl... [Pg.569]

The benzyl chloride quaternary salts RR R"NC3HsCH2 +Cl are prepared similarly 3 g. of redistilled benzyl chloride replaces the methyl p-toluenesulphonate. [Pg.660]

The dibenzyl ketone has a very high b.p. (ca. 200°/21 mm.) and this remains in the flask when the unsymmetrical ketone has been removed by distillation. The dialkyl ketone has a comparatively low b.p. and is therefore easily removed by fractionation under normal pressure acetone is most simply separated by washing with water. In this way methyl benzyl ketone (R = CHj), ethyl benzyl ketone (R = CHgCH,) and n-propyl benzyl ketone (R = CHjCHjCH,) are prepared. By using hydrocinnamic acid in place of phenylacetic acid ... [Pg.727]

By the hydrolysis of nitriles. The nitriles may be easily prepared either from amines by the Sandmeyer reaction (Section IV,66) or by the action of cuprous cyanide upon aryl halides (compare Section IV,163). Benzyl cyanide... [Pg.751]

Preparation of benzyl cyanide. Place 100 g. of powdered, technical sodium cyanide (97-98 per cent. NaCN) (CAUTION) and 90 ml. of water in a 1 litre round-bottomed flask provided with a reflux condenser. Warm on a water bath until the sodium cyanide dissolves. Add, by means of a separatory funnel fitted into the top of the condenser with a grooved cork, a solution of 200 g. (181-5 ml.) of benzyl chloride (Section IV.22) in 200 g. of rectified spirit during 30-45 minutes. Heat the mixture in a water bath for 4 hours, cool, and filter off the precipitated sodium chloride with suction wash with a little alcohol. Distil off as much as possible of the alcohol on a water bath (wrap the flask in a cloth) (Fig. II, 13, 3). Cool the residual liquid, filter if necessary, and separate the layer of crude benzyl cyanide. (Sometimes it is advantageous to extract the nitrile with ether or benzene.) Dry over a little anhydrous magnesium sulphate, and distil under diminished pressure from a Claisen flask, preferably with a fractionating side arm (Figs. II, 24, 2-5). Collect the benzyl cyanide at 102-103°/10 mm. The yield is 160 g. [Pg.761]

This product is sufficiently pure for the preparation of phenylacetic acid and its ethyl ester, but it contains some benzyl tso-cyanide and usually develops an appreciable colour on standing. The following procedure removes the iso-cyanide and gives a stable water-white compound. Shake the once-distilled benzyl cyanide vigorously for 5 minutes with an equal volume of warm (60°) 60 per cent, sulphuric acid (prepared by adding 55 ml. of concentrated sulphuric acid to 100 ml. of water). Separate the benzyl cyanide, wash it with an equal volume of sa+urated sodium bicarbonate solution and then with an equal volume of half-saturated sodium chloride solution- Dry with anhydrous magnesium sulphate and distil under reduced pressure. The loss in washing is very small (compare n-Butyl Cyanide, Section 111,113, in which concentrated hydrochloric acid is employed). [Pg.761]

Benzyl alcohol. This alcohol, b.p. 205-5°, may be similarly prepared from benzaldehyde in approximately the same yield (compare Section IV, 123.)... [Pg.812]

A solution of sodamide in liquid ammonia (essentially the amide NHj ion) is a very powerful alkylation catalyst, enabling condensations to be carried out with ease and in good yield which are otherwise either impossible or proceed with difficulty and are accompanied by considerable by-products. Thus 3-alkylpjTidines, otherwise inaccessible, are easily prepared from 3-picoline (see 3-n-amylpyridine in Section V,20). Also benzyl cyanide (I) and cyclohexyX bromide give a- r/ohexylphenylacetonitrile (II) ... [Pg.897]

The formation of alkylbenzenes, largely free from unaaturated compounds, provides another interesting application of organosodium compounds. Thus pure M-butylbenzene is readily obtained in good yield from benzyl sodium and n-propyl bromide. Benzyl-sodium is conveniently prepared by first forming phenyl-sodium by reaction between sodium and chlorobenzene in a toluene medium, followed by heating the toluene suspension of the phenyl-sodium at 105° for about 35 minutes ... [Pg.934]

A suspension of di1Ithiopropyne in THF and hexane was prepared from 0.25 mol of propyne (see Chapter II, Exp. 17). The suspension was cooled to -10°C and 0.22 mol of benzyl chloride was added dropwise in 30 min, while maintaining the temperature of the mixture at about -10°C. The cooling bath was then removed temporarily and the temperature was allowed to rise to After stirring for... [Pg.48]

Two moles of diphenylacetylene insert into the benzyl methyl sulfide complex 481 to afford the eight-membered heterocycle 482[440j. The cinnolinium Salt 483 is prepared by the insertion of alkynes into the azobenzene com-plex[44l]. [Pg.89]

Aldehydes can also be prepared by the carbonylation of aryl and alkenyl halides and triflate, and benzyl and allyl chlorides using tin hydride as a hydride source and Pd(PhjP)4 as a catalyst[377]. Hydrosilancs arc used as another hydride source[378]. The arenediazonium tetralluoroborate 515 is converted into a benzaldehyde derivative rapidly in a good yield by using Et ,SiH or PH MS as the hydride source[379]. [Pg.199]


See other pages where Benzyl preparation is mentioned: [Pg.57]    [Pg.57]    [Pg.87]    [Pg.372]    [Pg.401]    [Pg.270]    [Pg.315]    [Pg.497]    [Pg.735]    [Pg.902]    [Pg.203]    [Pg.163]    [Pg.48]    [Pg.77]    [Pg.84]    [Pg.191]    [Pg.200]    [Pg.209]    [Pg.212]    [Pg.222]   
See also in sourсe #XX -- [ Pg.205 , Pg.206 , Pg.207 ]




SEARCH



1.6- anhydro-4-5-benzyl-4-thio preparation

4-0-benzyl-3,6-dideoxy-6-fluoro preparation

Benzyl -nitrobenzoate, preparation

Benzyl acetate, preparation

Benzyl alcohol, -a-rf, preparation

Benzyl alcohol, preparation

Benzyl alcohol, preparation reactions

Benzyl amine, tri preparation

Benzyl chloride preparation

Benzyl derivatives preparation

Benzyl ester, preparation

Benzyl ester, preparation acid synthesis

Benzyl ester, preparation reactivity

Benzyl ester, preparation salts

Benzyl ethers preparation

Benzyl fluoride preparation

Benzyl glycosides, preparative liquid

Benzyl isonitriles, preparation

Benzyl phosphonium ions prepared

Benzylic nickel halides preparation

Ether, benzyl ethyl preparation

Industrial preparation benzyl alcohol

Oxidation reactions benzyl/allyl halide preparation

Preparation and Coupling Reactions of Benzylic Manganese Halides

Preparation of Benzyl Chloride from Toluene

© 2024 chempedia.info