Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleosome core

Page 1171 (Figure 28 7) is adapted from crystallograpliic coordinates deposited with The Protein Data Bank PDB ID lAOl Luger A Mader W Richmond R K Sargent D F Richmond T J Crystal Structure of the Nucleosome Core Particle at 2 8 A Resolution Nature 1997 V 389 251... [Pg.1298]

Richmond and collaborators (Figure 12.30). The octamer (Figure 12.29) has surface landmarks that guide the course of the DNA around the octamer 146 bp of B-DNA in a flat, left-handed superhelical conformation make 1.65 turns around the histone core (Figure 12.30), which itself is a protein superhelix consisting of a spiral array of the four histone dimers. Histone 1, a three-domain protein, serves to seal the ends of the DNA turns to the nucleosome core and to organize the additional 40 to 60 bp of DNA that link consecutive nucleo-... [Pg.380]

Fig. 3.18 Nucleosome core particle (NCP)-polyamide co-crystal structures (PDB codes 1M18 and 1M19). (Top) Partial structure, viewed down the superhelical axis. Base pairs 58-145 (shown in white) and associated proteins (H3, blue H4, green H2A, yellow H2B, red) are shown for each complex. Superhelix locations (SHLs) are labeled as each major... Fig. 3.18 Nucleosome core particle (NCP)-polyamide co-crystal structures (PDB codes 1M18 and 1M19). (Top) Partial structure, viewed down the superhelical axis. Base pairs 58-145 (shown in white) and associated proteins (H3, blue H4, green H2A, yellow H2B, red) are shown for each complex. Superhelix locations (SHLs) are labeled as each major...
C.L. White, C. Melander, J.M. Gotteseeld, P. B. Dervan, and K. Luger Crystal stmctures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 2003, 326, 371-380. [Pg.151]

When the histone octamer is mixed with purified, double-stranded DNA, the same x-ray diffraction pattern is formed as that observed in freshly isolated chromatin. Electron microscopic studies confirm the existence of reconstituted nucleosomes. Furthermore, the reconsti-mtion of nucleosomes from DNA and histones H2A, H2B, H3, and H4 is independent of the organismal or cellular origin of the various components. The histone HI and the nonhistone proteins are not necessary for the reconstitution of the nucleosome core. [Pg.315]

Luger L et al Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997 398 251. [Pg.339]

Abstract Histone proteins that form the nucleosome core are subject to a variety of post-translational... [Pg.341]

Smooth COSMO solvation model. We have recently extended our smooth COSMO solvation model with analytical gradients [71] to work with semiempirical QM and QM/MM methods within the CHARMM and MNDO programs [72, 73], The method is a considerably more stable implementation of the conventional COSMO method for geometry optimizations, transition state searches and potential energy surfaces [72], The method was applied to study dissociative phosphoryl transfer reactions [40], and native and thio-substituted transphosphorylation reactions [73] and compared with density-functional and hybrid QM/MM calculation results. The smooth COSMO method can be formulated as a linear-scaling Green s function approach [72] and was applied to ascertain the contribution of phosphate-phosphate repulsions in linear and bent-form DNA models based on the crystallographic structure of a full turn of DNA in a nucleosome core particle [74],... [Pg.384]

Fig. 10 Charge transport is observed in a variety of nucleic acid assemblies over a wide distance regime (3.4-200 A). Shown are examples of nucleic acid structures through which charge transport has been examined a B-form DNA b DNA-RNA hybrids c cross-over junctions and d nucleosome core particles. In all assemblies, the charge transport chemistry is extremely sensitive to the structure of the -stacked nucleic acid bases... Fig. 10 Charge transport is observed in a variety of nucleic acid assemblies over a wide distance regime (3.4-200 A). Shown are examples of nucleic acid structures through which charge transport has been examined a B-form DNA b DNA-RNA hybrids c cross-over junctions and d nucleosome core particles. In all assemblies, the charge transport chemistry is extremely sensitive to the structure of the -stacked nucleic acid bases...
The four histone groups that are composed of ho-mogeneous proteins, H2A, H2B, H3, and H4, make up the nucleosome core. Each core consists of two copies of the four histones. The double-stranded DNA is wrapped twice around each core in a left-handed superhelix. A superhelix is the name given to the additional helix made by the double-stranded, helical DNA as it is wrapped around the nucleosome core. A familiar superhelix in everyday life is a twisted spiral telephone cord. The nucleosome core of histones do not recognize specific DNA structures rather, they can bind to any stretch of DNA as long as it is not too close to a neighboring nucleosome. The order of contact of histones to the DNA is as follows ... [Pg.218]

SADP or sulfo-SADP also have been used to study the phenylalanine-methionine-arginine-phenylalanine-amide-activated sodium channel (Coscoy et al., 1998), various apolipoprotein E isoforms (Mann et al., 1995), the high-affinity phenylalkylamine Ca2+ antagonist binding protein from guinea pig (Moebius et al., 1994), the interaction of non-histone proteins with nucleosome core particles (Reeves and Nissen, 1993), and the interactions among cytochromes P-450 in the endoplasmic reticulum (Alston et al., 1991). See Chapter 28 for methods of using photoreactive heterobifunctional crosslinkers to study protein interactions. [Pg.316]

Reeves, R., and Nissen, M.S. (1993) Interaction of high mobility group-I (Y) nonhistone proteins with nucleosome core particles./. Biol. Chem. 268, 21137-21146. [Pg.1106]

Time-dependent fluorescence measurements have been made on tyrosine in calf thymus nucleosome core particles by Ashikawa et al. S7) Based on the salt dependence of the decay data, the tyrosines were divided into two classes. At 20 to 400 mM salt, about half of the tyrosine residues appear to be partially quenched, possibly by resonance energy transfer to DNA bases. The other half are thought to be statically quenched, possibly by hydrogen bonds this quenching is partially eliminated at about 2 M salt. In view of the number of tyrosines per nucleosome core particle (estimated at 30), it is impossible to make a more detailed analysis of the decay data. [Pg.23]

I. Ashikawa, Y. Nishimura, M. Tsuboi, K. Watanabe, and K. Iso, Lifetime of tyrosine fluorescence in nucleosome core particles, J. Biochem. (Tokyo) 91, 2047-2055 (1982). [Pg.57]

Though derived for DNA, and nucleosome core particles, these twisting correlation functions are potentially useful for the analysis of other filamentous biopolymers. Such analyses of optical anisotropy data for actin filaments... [Pg.162]

The nucleosome is composed of 200 base pairs of DNA and an octamer of the histones H2A, H2B, H3, and H4 as well as histone HI (Komberg, 1974, 1977). Nucleosomes can be obtained by mild digestion of chromatin with micrococcal nuclease (Noll, 1974a Axel, 1975), followed by fractionation on a sucrose gradient. Further digestion of the nucleosomes results in the formation of nucleosome core particles composed of 145 base pairs of DNA and an octamer of the histones H2A, H2B, H3, and H4 (Rill and Van Holde, 1973 Sollner-Webb and Felsenfeld, 1975 Axel, 1975 Bakayev et al., 1975 Whitlock and Simpson, 1976 Noll and Komberg, 1977). The DNA piece thus excised is called linker DNA which serves as a link... [Pg.3]

The histone octamer of nucleosome core particles was cross-linked by dimethylsuberimidate and isolated from the DNA by precipitation in 3 M NaCl (0.05 M sodium phosphate buffer, pH 7.0). The cross-linked octamer, dissolved at low ionic strength, was reconstituted by mixing with DNA at 1.0 M NaCl (pH 8.0 Tris buffer) and dialyzed against 0.6 M NaCl in the same buffer. The reconstituted particle had properties similar to those of the cross-linked core particle. It sedi-... [Pg.14]

Simon et al. (1978). The complex with an H3 H4 octamer more closely resembled the nucleosome core particle with respect to compaction, suggesting that H3 and H4 could replace H2A and H2B in the compaction of the DNA into nucleosome core particles. [Pg.31]

Fig. 5. Schematic model of the nucleosome, with histone HI shown as stabilizing the fold of the DNA molecule around the core histones [based on results of Sperling and Sperling (1978)]. The nucleosome dimensions are derived from X-ray (Finch et al., 1977) and neutron (Baldwin et al., 1975 Pardon et al., 1977 Suauet al., 1977) scattering experiments. The histone core dimensions are derived from electron microscopic and X-ray studies (Sperling and Amos, 1977 Wachtel and Sperling, 1979 Sperling and Wachtel, 1979). The regions of the DNA molecule indicated by dashed lines indicate those base pairs which are not present in nucleosome core particles. Fig. 5. Schematic model of the nucleosome, with histone HI shown as stabilizing the fold of the DNA molecule around the core histones [based on results of Sperling and Sperling (1978)]. The nucleosome dimensions are derived from X-ray (Finch et al., 1977) and neutron (Baldwin et al., 1975 Pardon et al., 1977 Suauet al., 1977) scattering experiments. The histone core dimensions are derived from electron microscopic and X-ray studies (Sperling and Amos, 1977 Wachtel and Sperling, 1979 Sperling and Wachtel, 1979). The regions of the DNA molecule indicated by dashed lines indicate those base pairs which are not present in nucleosome core particles.
A low-energy in vitro form of nucleosome packing was observed in nucleosome core particle crystals (Finch et al., 1977). Two variants of these crystals occurred, (a) Wavy columns of nucleosomes stacked one on top of each other with an axial repeat of 340 A were obtained upon crystallization of nucleosomes containing proteolytically cleaved histones (Finch et al., 1977). (b) Straight columns of closely packed nucleosomes, 110 A in diameter, were obtained upon crystallization of nucleosomes with intact histones (Finch and Klug, 1978). In both these structures histone-histone contacts between nucleosomes are implied. Similar face-to-face packing of nucleosomes in arcs and helical patterns was observed in the EM by Dubochet and Noll (1978). [Pg.38]

Fig. 6. (a) A schematic model of the helical, double-stranded, unstaggered, H4 fiber (Sperling and Amos, 1977). The asymmetric unit is an axial dimer and there are six such dimers per strand per repeat. The repeat distance is 330 A. The two different types of axial bonds—within and between dimers—are denoted by a thick and thin line, respectively. The tetrameric grouping is indicated, (b) A model of (a) upon which is superimposed a schematic representation of a nucleosome core particle... [Pg.40]

In arrays of closely packed nucleosomes composed of all four core histones, strands of H2A-H2B dimers could be incorporated in the grooves between the two H3-H4 strands, producing a four-stranded polymer. Alternatively, they could bind to the H3-H4 double-stranded fiber to give an octamer of the histones per nucleosome. This latter model is supported by the photochemical cross-linking of histones to DNA which have shown that within the nucleosome core the four core histones are not equivalently positioned with respect to... [Pg.43]

Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88 10148-10152... [Pg.23]

Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157 579-589 Mangenot S, Leforestier A, Vachette P, Durand D, Livolant F (2002) Salt-induced conformation and interaction changes of nucleosome core particles. Biophys J 82 345-356 Marsden MP, Laeimnh UK (1979) Metaphase chromosome structure evidence for a radial loop model. Cell 17 849-858... [Pg.26]

Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191 659-675... [Pg.27]

Simon RH, Eelsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6 689-696 Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17 5524-5531 Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A 80 51-55... [Pg.28]

Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8 33-40 MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWl remodeling complexes in Xenopus egg extracts identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13 25-39... [Pg.42]


See other pages where Nucleosome core is mentioned: [Pg.380]    [Pg.141]    [Pg.143]    [Pg.394]    [Pg.315]    [Pg.109]    [Pg.109]    [Pg.183]    [Pg.218]    [Pg.45]    [Pg.8]    [Pg.26]    [Pg.27]    [Pg.29]    [Pg.32]    [Pg.32]    [Pg.42]    [Pg.43]    [Pg.15]    [Pg.38]    [Pg.67]    [Pg.72]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Nucleosome

Nucleosomes

© 2024 chempedia.info