Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral Nucleophiles

Compared with the variety of existing carbon or nitrogen nucleophiles that were subjected to nucleophilic addition to there are few examples for phosphorus nucleophiles. Neutral trialkylphosphines turn out to be to less reactive for an effective addihon to Cjq even at elevated temperatures [114], Trialkylphosphine oxides show an increased reactivity. They form stable fullerene-substituted phosphine oxides [115] it is not yet clear if the reaction proceeds via a nucleophilic mechanism or a cycloaddition mechanism. Phosphine oxide addition takes place in refluxing toluene [115], At room temperature the charge-transfer complexes of with phosphine oxides such as tri-n-octylphosphine oxide or tri-n-butylphosphine oxide are verifiable and stable in soluhon [116],... [Pg.92]

The main methods for the synthesis of hexacoordinate silicon compounds are similar to those for pentacoordinate complexes and were outlined in a recent review6. These methods include (a) addition of nucleophiles (neutral or anionic) to tetracoordinate silanes (b) intermolecular or intramolecular coordination to an organosilane (c) substitution of a bidentate ligand in a tetrafunctional silane. The following discussion focuses mainly on new complexes, reported since the recent reviews6,7 were published. [Pg.1412]

Amides react as electrophiles only with powerful nucleophiles such as HO-. Acid chlorides, on the other hand, react with even quite weak nucleophiles neutral ROH, for example. They are more reactive because the electron-withdrawing effect of the chlorine atom increases the electrophilicity of the carbonyl carbon atom. [Pg.288]

In nonpolar solvents, anionic [Pd L Cl] are probably not formed due to ion-pairing between Cl and the cation m deUveied by the nucleophile. Consequently, the formation of the anionic [PhPdI(Cl)LJ can be also bypassed. frans-PhPdILj is thus formed and reacts with the nucleophile (neutral pathway in Scheme 19.28). The cross-coupling product is however delivered in a slower reaction because it is retarded by the endergonic transicis equilibrium. [Pg.528]

In base the OH becomes O and is more nuclecphilic than N. In neutral solution N is more nucleophilic than OH. [Pg.53]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

Amines are powerful nucleophiles which react under neutral or slightly basic conditions with several electron-accepting carbon reagents. The reaction of alkyl halides with amines is useful for the preparation of tertiary amines or quaternary ammonium salts. The conversion of primary amines into secondary amines is usually not feasible since the secondary amine tends towards further alkylation. [Pg.290]

Since allylation with allylic carbonates proceeds under mild neutral conditions, neutral allylation has a wide application to alkylation of labile compounds which are sensitive to acids or bases. As a typical example, successful C-allylation of the rather sensitive molecule of ascorbic acid (225) to give 226 is possible only with allyl carbonate[l 37]. Similarly, Meldrum s acid is allylated smoothly[138]. Pd-catalyzed reaction of carbon nucleophiles with isopropyl 2-methylene-3,5-dioxahexylcarbomite (227)[I39] followed by hydrolysis is a good method for acetonylation of carbon nucleophiles. [Pg.320]

Hydroxylysine (328) was synthesized by chemoselective reaction of (Z)-4-acet-oxy-2-butenyl methyl carbonate (325) with two different nucleophiles first with At,(9-Boc-protected hydroxylamine (326) under neutral conditions and then with methyl (diphenylmethyleneamino)acetate (327) in the presence of BSA[202]. The primary allylic amine 331 is prepared by the highly selective monoallylation of 4,4 -dimethoxybenzhydrylamine (329). Deprotection of the allylated secondary amine 330 with 80% formic acid affords the primary ally-lamine 331. The reaction was applied to the total synthesis of gabaculine 332(203]. [Pg.334]

Phenols arc highly reactive 0-nucleophiles and allylated easily with allylic carbonates under neutral conditions. EWGs on phenols favor the reac-tion[213]. Allylic acetates are used for the allylation of phenol in the presence of KF-alumina as a base[214]. [Pg.337]

Various S-nucleophiles are allylated. Allylic acetates or carbonates react with thiols or trimethylsilyl sulfide (353) to give the allylic sulfide 354[222], Allyl sulfides are prepared by Pd-catalyzed allylic rearrangement of the dithio-carbonate 355 with elimination of COS under mild conditions. The benzyl alkyl sulfide 357 can be prepared from the dithiocarbonate 356 at 65 C[223,224], The allyl aryl sufide 359 is prepared by the reaction of an allylic carbonate with the aromatic thiol 358 by use of dppb under neutral condi-tions[225]. The O-allyl phosphoro- or phosphonothionate 360 undergoes the thiono thiolo allylic rearrangement (from 0-allyl to S -allyl rearrangement) to afford 361 and 362 at 130 C[226],... [Pg.338]

No reaction of soft carbon nucleophiles takes place with propargylic acet-ates[37], but soft carbon nucleophiles, such as / -keto esters and malonates, react with propargylic carbonates under neutral conditions using dppe as a ligand. The carbon nucleophile attacks the central carbon of the cr-allenylpal-ladium complex 81 to form the rr-allylpalladium complex 82, which reacts further with the carbon nucleophile to give the alkene 83. Thus two molecules of the a-monosubstituted /3-keto ester 84, which has one active proton, are... [Pg.465]

The sulfur atom of the thiocarbonyl group is a good nucleophile, and reaction between benzyl bromide and l-(2-thiazolyl)thiourea yields the isothiouronium salt (496). The sulfur atom may also be engaged in a chelate, as exemplified by the Cu chelate of 2-thioureido-4-methylthiazole (491). These chelates with metal ions were thoroughly studied in acidic, neutral, and alkaline media for 66 metal ions in order to define their analytical use. They are formed in the molar ratio of 1 2 for metal II compounds (498). [Pg.95]

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

CycJohexyl free radicals, generated by photolysis of t-butyl peroxide in excess cyclohexane, also possess nucleophilic character (410). Their attack on thiazole in neutral medium leads to an increase of the 2-isomer and a decrease of 5-isomer relative to the phenylation reaction, in agreement with the positive charge of the 2-position and the negative charge of the 5-position (6). [Pg.111]

Regarding the substituent effect on reactivity of groups in positions 4 and 5 there is little information in the literature. The reactivity of halogen in position 5 seems to be increased when an amino group is present in position 2. Substitution products are easily obtained using neutral nucleophiles such as thiourea, thiophenols, and mercaptans (52-59). [Pg.572]

The Lewis base that acts as the nucleophile often is but need not always be an anion Neutral Lewis bases can also serve as nucleophiles Common examples of substitutions involving neutral nucleophiles include solvolysis reactions Solvolysis reactions are substitutions m which the nucleophile is the solvent m which the reaction is carried out 8olvolysis m water (hydrolysis) converts an alkyl halide to an alcohol... [Pg.336]

Neutral Lewis bases such as water alcohols and carboxylic acids are much weaker nucleophiles than their conjugate bases When comparing species that have the same nucleophilic atom a negatively charged nucleophile is more reactive than a neutral one... [Pg.337]

Nucleophiles other than Gngnard reagents also open epoxide rings These reac tions are carried out in two different ways The first (Section 16 12) involves anionic nucleophiles in neutral or basic solution... [Pg.678]

As we ve just seen nucleophilic ring opening of ethylene oxide yields 2 substituted derivatives of ethanol Those reactions involved nucleophilic attack on the carbon of the ring under neutral or basic conditions Other nucleophilic ring openings of epoxides like wise give 2 substituted derivatives of ethanol but either involve an acid as a reactant or occur under conditions of acid catalysis... [Pg.681]

The role of the basic catalyst (HO ) is to increase the rate of the nucleophilic addi tion step Hydroxide ion the nucleophile m the base catalyzed reaction is much more reactive than a water molecule the nucleophile m neutral solutions... [Pg.716]

Steric and electronic effects influence the rate of nucleophilic addition to a proton ated carbonyl group m much the same way as they do for the case of a neutral one and protonated aldehydes react faster than protonated ketones... [Pg.717]

Ester hydrolysis is the most studied and best understood of all nucleophilic acyl sub stitutions Esters are fairly stable in neutral aqueous media but are cleaved when heated with water m the presence of strong acids or bases The hydrolysis of esters m dilute aqueous acid is the reverse of the Eischer esterification (Sections 15 8 and 19 14)... [Pg.848]

Protonation of the carbonyl oxygen as emphasized earlier makes the carbonyl group more susceptible to nucleophilic attack A water molecule adds to the carbonyl group of the protonated ester m step 2 Loss of a proton from the resulting oxonium ion gives the neutral form of the tetrahedral intermediate m step 3 and completes the first stage of the mechanism... [Pg.851]

Step 2 Nucleophilic addition of the ester enolate to the carbonyl group of the neutral ester The product is the anionic form of the tetrahedral intermediate... [Pg.888]


See other pages where Neutral Nucleophiles is mentioned: [Pg.29]    [Pg.106]    [Pg.236]    [Pg.244]    [Pg.801]    [Pg.378]    [Pg.922]    [Pg.550]    [Pg.183]    [Pg.309]    [Pg.313]    [Pg.328]    [Pg.329]    [Pg.462]    [Pg.29]    [Pg.106]    [Pg.236]    [Pg.244]    [Pg.801]    [Pg.378]    [Pg.922]    [Pg.550]    [Pg.183]    [Pg.309]    [Pg.313]    [Pg.328]    [Pg.329]    [Pg.462]    [Pg.816]    [Pg.301]    [Pg.320]    [Pg.325]    [Pg.454]    [Pg.89]    [Pg.105]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Neutral nucleophile

© 2024 chempedia.info