Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleic acid, enzymic synthesis

As there are no reports of adverse effects from consumption of excess thiamine from food and supplements (supplements of 50 mg/day are widely available without prescription), and the data are inadequate for a quantitative risk assessment, no UL has been defined for thiamine. However, as stimulators of transketolase enzyme synthesis such as thiamine support a high rate of nucleic acid ribose synthesis necessary for tumor cell survival, chemotherapy resistance, and proliferation, some concern has been expressed that thiamine supplementation of common food products may contribute to increased cancer rates in the Western world. There is, however, littie evidence to support this assumption. Rarely, individuals given high-dose intravenous thiamine in treatment of beriberi have developed anaphylaxis, the frequency being about 1 100,000. [Pg.1092]

DNA polymerase enzymes all synthesize DNA by adding deoxynucleotides to the free 3 -OH group of an RNA or DNA primer sequence. The identity of the inserted nucleotide is deterrnined by its abiHty to base-pair with the template nucleic acid. The dependence of synthesis on a primer oligonucleotide means that synthesis of DNA proceeds only in a 5%o V direction if only one primer is available, all newly synthesized DNA sequences begin at the same point. [Pg.233]

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Ribulose 5-phosphate is the substrate for two enzymes. Ribulose 5-phosphate 3-epimerase alters the configuration about carbon 3, forming another ketopentose, xylulose 5-phosphate. Ribose 5-phosphate ketoisom-erase converts ribulose 5-phosphate to the corresponding aldopentose, ribose 5-phosphate, which is the precursor of the ribose required for nucleotide and nucleic acid synthesis. Transketolase transfers the two-carbon... [Pg.163]

Genetic informahon for viral reproduchon resides in its nucleic acid (DNA or RNA see Chapter 3). The viral particle (virion) does not possess enzymes necessary for its own replication after entry into the host cell, the vims uses the enzymes already present or induces the formahon of new ones. Vimses replicate by synthesis of their separate components followed by assembly. [Pg.124]

Epirubicin inhibits both DNA and RNA polymerases and thus inhibits nucleic acid synthesis and topoisomerase II enzymes. Epirubicin pharmacokinetics are best described by a three-compartment model, with an a half-life of 4 to 5 minutes, a... [Pg.1289]

Early steps in replication of the virus nucleic acid, in which the host cell biosynthetic machinery is altered as a prelude to virus nucleic acid synthesis. Virus-specific enzymes may be made ... [Pg.122]

As we have noted, the outcome of a virus infection is the synthesis of viral nucleic acid and viral protein coats. In effect, the virus takes over the biosynthetic machinery of the host and uses it for its own synthesis. A few enzymes needed for virus replication may be present in the virus particle and may be introduced into the cell during the infection process, but the host supplies everything else energy-generating system, ribosomes, amino-acid activating enzymes, transfer RNA (with a few exceptions), and all soluble factors. The virus genome codes for all new proteins. Such proteins would include the coat protein subunits (of which there are generally more than one kind) plus any new virus-specific enzymes. [Pg.123]

Not all the cellular DNA is in the nucleus some is found in the mitochondria. In addition, mitochondria contain RNA as well as several enzymes used for protein synthesis. Interestingly, mitochond-rial RNA and DNA bear a closer resemblance to the nucleic acid of bacterial cells than they do to animal cells. For example, the rather small DNA molecule of the mitochondrion is circular and does not form nucleosomes. Its information is contained in approximately 16,500 nucleotides that func-tion in the synthesis of two ribosomal and 22 transfer RNAs (tRNAs). In addition, mitochondrial DNA codes for the synthesis of 13 proteins, all components of the respiratory chain and the oxidative phosphorylation system. Still, mitochondrial DNA does not contain sufficient information for the synthesis of all mitochondrial proteins most are coded by nuclear genes. Most mitochondrial proteins are synthesized in the cytosol from nuclear-derived messenger RNAs (mRNAs) and then transported into the mito-chondria, where they contribute to both the structural and the functional elements of this organelle. Because mitochondria are inherited cytoplasmically, an individual does not necessarily receive mitochondrial nucleic acid equally from each parent. In fact, mito-chondria are inherited maternally. [Pg.220]

The dilemma described above, that cytosine-rich matrices lead to (complementary) sequences which are low in cytosine and are themselves ineffective matrices, makes the synthesis of nucleic acids in the absence of enzymes almost impossible. Thus, other models and model experiments must be looked for. [Pg.153]

The permeability coefficient of 2.6x 10 locm/s at 296 K measured by Deamer is sufficient to supply the enzyme in the liposomes with ADP. How could it be shown that RNA formation actually does take place in the vesicles The increase in the RNA synthesis was detected by observing the fluorescence inside the vesicles. In the interior of the liposomes, the reaction rate is only about 20% of that found for the free enzyme, which shows that the liposome envelope does limit the efficiency of the process. The fluorescence measurements were carried out with the help of ethidium bromide, a fluorescence dye often used in nucleic acid chemistry. [Pg.270]

Ghosh, S.S., Kao, P.M., and Kwoh, D.Y. (1989) Synthesis of 5 -oligonucleotide hydrazide derivatives and their use in preparation of enzyme-nucleic acid hybridization probes. Anal. Biochem. 178, 43-51. [Pg.1066]

Showdomycin inhibits synthesis of nucleic acid. Thiols, such as cysteine and glutathione (among other compounds), reverse this inhibition, and it is considered that the interaction of the maleimide moiety with sulfhydryl groups within the cell or in the membrane may be responsible for the selective inhibition of enzymes by show-... [Pg.168]

The Li+-induced inhibition of the production of the HSV virus may be related to its actions upon viral DNA polymerase production and activity. Li+ reduces both the synthesis of DNA polymerase in tissue culture and the activity of DNA polymerase in vitro, each by about 50%. It has been proposed that Li+ reduces the biosynthesis of viral polypeptides and nucleic acids, and hence inhibits viral DNA replication by competition with Mg2+, a cofactor of many enzymes [243]. However, the inhibitory effect of Li+ on HSV replication in tissue culture is not affected by Mg2+ levels. A more likely hypothesis is the alteration of the intracellular K+ levels, possibly modifying levels of the high-energy phosphate compounds by replacement of either Na+ or K+ in Na+/K+-ATPase [244]. In tissue culture, HSV replication has been shown to be affected by the... [Pg.39]

This great structural variety, however, complicates the specific biosynthesis of complex oligosaccharides. In general, the formation of each saccharide linkage requires specific enzymes ( one linkage—more than one enzyme ) and thus, in comparison with the enzymic synthesis of proteins and nucleic acids, much more effort is needed. [Pg.34]

We consider, successively, the catalytic role of several classes of mononuclear Zn2+ enzymes and then discuss enzymes with di- and tri-nuclear cocatalytic zinc centres, some of which include a metal ion other than zinc. We conclude with a presentation of some of the zinc-based motifs found in proteins involved in the regulation of nucleic acid and protein synthesis. [Pg.198]

Virtually all biological reactions are stereospecific. This generalization applies not only to the enzyme-catalyzed reactions of intermediary metabolism, but also to the processes of nucleic acid synthesis and to the process of translation, in which the amino acids are linked in specific sequence to form the peptide chains of the enzymes. This review will be restricted mainly to some of the more elementary aspects of the stereospecificity of enzyme reactions, particularly to those features of chirality which have been worked out with the help of isotopes. [Pg.44]

Given this structural similarity, it should not be surprising to learn that sulfanilamide competes with p-aminobenzoic acid for a binding site on the surface of dihydropteroate synthetase. Put another way, sulfanilamide binds to the enzyme where p-aminobenzoic acid should bind but no reaction occurs. The consequence is that a step in folic acid biosynthesis is disrupted and the bacterial cell is deprived of adequate folic acid. Nucleic acid synthesis, among other things, is disrupted, leading to a cessation of cell growth and division. The human immune system can mop up what remains. No similar consequences befall the human host since it cannot make folic acid in the first place and must get an adequate supply of this vitamin in the diet. [Pg.322]


See other pages where Nucleic acid, enzymic synthesis is mentioned: [Pg.2]    [Pg.231]    [Pg.4]    [Pg.4]    [Pg.206]    [Pg.283]    [Pg.242]    [Pg.206]    [Pg.229]    [Pg.68]    [Pg.302]    [Pg.303]    [Pg.113]    [Pg.151]    [Pg.49]    [Pg.261]    [Pg.852]    [Pg.290]    [Pg.42]    [Pg.187]    [Pg.852]    [Pg.337]    [Pg.2]    [Pg.291]    [Pg.298]    [Pg.175]    [Pg.14]    [Pg.169]    [Pg.290]    [Pg.194]    [Pg.588]    [Pg.58]   
See also in sourсe #XX -- [ Pg.18 , Pg.25 ]




SEARCH



Enzyme nucleic acid

Enzymic synthesis

Nucleic acid, synthesis

Nucleic synthesis

© 2024 chempedia.info