Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance phases

For bulk structural detemiination (see chapter B 1.9). the main teclmique used has been x-ray diffraction (XRD). Several other teclmiques are also available for more specialized applications, including electron diffraction (ED) for thin film structures and gas-phase molecules neutron diffraction (ND) and nuclear magnetic resonance (NMR) for magnetic studies (see chapter B1.12 and chapter B1.13) x-ray absorption fine structure (XAFS) for local structures in small or unstable samples and other spectroscopies to examine local structures in molecules. Electron microscopy also plays an important role, primarily tlirough unaging (see chapter B1.17). [Pg.1751]

Both vapor-phase chromatography and high performance Hquid chromatography, along with nuclear magnetic resonance spectroscopy, have been used for isomer and composition analysis. [Pg.457]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

The majority of trichloroethylene present on soil surfaces will volatilize to the atmosphere or leach into the subsurface. Once trichloroethylene leaches into the soil, it appears not to become chemically transformed or undergo covalent bonding with soil components. When trichloroethylene was absorbed onto kaolinite and bentonite, the nuclear magnetic resonance (NMR) spectra showed no evidence of chemical reactions (Jurkiewicz and Maciel 1995). Because trichloroethylene is a dense nonaqueous phase liquid, it can move through the imsaturated zone into the saturated zone where it can displace soil pore water (Wershaw et al. 1994). [Pg.213]

Strohschein, S., Pursch, M., and Albert, K., Hyphenation of high performance liquid chromatography with nuclear magnetic resonance spectroscopy for the characterization of (3-carotene isomers employing a Cjq stationary phase, J. Pharm. Biom. Anal., 21, 669, 1999. [Pg.476]

A number of techniques have been employed that are capable of giving information about amorphous phases. These include infrared spectroscopy, especially the use of the attenuated total reflection (ATR) or Fourier transform (FT) techniques. They also include electron probe microanalysis, scanning electron microscopy, and nuclear magnetic resonance (NMR) spectroscopy. Nor are wet chemical methods to be neglected for they, too, form part of the armoury of methods that have been used to elucidate the chemistry and microstructure of these materials. [Pg.359]

These special features are explained by an interaction between the proton and one of the water molecules, which is not merely electrostatic but also covalent. This yields a new chemical species, the hydroxonium ion, HjO. The existence of such ions was demonstrated in the gas phase by mass spectrometry and in the solid phase by X-ray diffraction and nuclear magnetic resonance. The H -H20 bond has an energy of 712kJ/mol, which is almost two-thirds of the total proton hydration energy. [Pg.111]

Online detection using 4H nuclear magnetic resonance (NMR) is a detection mode that has become increasingly practical. In a recent application, cell culture supernatant was monitored on-line with 1-dimensional NMR for trehalose, P-D-pyranose, P-D-furanose, succinate, acetate and uridine.33 In stopped-flow mode, column fractions can also be analyzed by 2-D NMR. Reaction products of the preparation of the neuromuscular blocking compound atracurium besylate were separated on chiral HPLC and detected by 4H NMR.34 Ten isomeric peaks were separated on a cellulose-based phase and identified by online NMR in stopped-flow mode. [Pg.62]


See other pages where Nuclear magnetic resonance phases is mentioned: [Pg.1437]    [Pg.1590]    [Pg.3]    [Pg.1279]    [Pg.153]    [Pg.8]    [Pg.219]    [Pg.509]    [Pg.398]    [Pg.53]    [Pg.302]    [Pg.84]    [Pg.35]    [Pg.10]    [Pg.415]    [Pg.591]    [Pg.157]    [Pg.1132]    [Pg.85]    [Pg.251]    [Pg.4]    [Pg.124]    [Pg.521]    [Pg.881]    [Pg.544]    [Pg.468]    [Pg.271]    [Pg.818]    [Pg.93]    [Pg.130]    [Pg.377]    [Pg.244]    [Pg.485]    [Pg.62]    [Pg.74]    [Pg.257]    [Pg.297]    [Pg.272]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Magnetic phase

Phase resonance

© 2024 chempedia.info