Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance elucidation

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Generally, the most powerful method for stmctural elucidation of steroids is nuclear magnetic resonance (nmr) spectroscopy. There are several classical reviews on the one-dimensional (1-D) proton H-nmr spectroscopy of steroids (267). C-nmr, a technique used to observe individual carbons, is used for stmcture elucidation of steroids. In addition, C-nmr is used for biosynthesis experiments with C-enriched precursors (268). The availability of higher magnetic field instmments coupled with the arrival of 1-D and two-dimensional (2-D) techniques such as DEPT, COSY, NOESY, 2-D J-resolved, HOHAHA, etc, have provided powerful new tools for the stmctural elucidation of complex natural products including steroids (269). [Pg.448]

Other spectroscopic methods such as infrared (ir), and nuclear magnetic resonance (nmr), circular dichroism (cd), and mass spectrometry (ms) are invaluable tools for identification and stmcture elucidation. Nmr spectroscopy allows for geometric assignment of the carbon—carbon double bonds, as well as relative stereochemistry of ring substituents. These spectroscopic methods coupled with traditional chemical derivatization techniques provide the framework by which new carotenoids are identified and characterized (16,17). [Pg.97]

Other methods of identification include the customary preparation of derivatives, comparisons with authentic substances whenever possible, and periodate oxidation. Lately, the application of nuclear magnetic resonance spectroscopy has provided an elegant approach to the elucidation of structures and stereochemistry of various deoxy sugars (18). Microcell techniques can provide a spectrum on 5-6 mg. of sample. The practicing chemist is frequently confronted with the problem of having on hand a few milligrams of a product whose structure is unknown. It is especially in such instances that a full appreciation of the functions of mass spectrometry can be developed. [Pg.214]

NMR, nuclear magnetic resonance, is an analytical technique based on the energy differences of nuclear spin systems in a strong magnetic field. It is a powerful technique for structural elucidation of complex molecules. [Pg.861]

Other spectroscopic properties such as nuclear magnetic resonance (NMR), mass spectrometry (MS), infra-red (IR), and circular dichroism (CD) spectra of chlorophyll compounds and derivatives have been valuable tools for structural elucidation. - ... [Pg.32]

The development and reports of methods for colorless chlorophyll derivative (RCCs, FCCs, and NCCs) analysis are relatively recent and the structures of the compounds are being elucidated by deduction from their chromatographic behaviors, spectral characteristics (UV-Vis absorbance spectra), mass spectrometry, and nuclear magnetic resonance analysis. The main obstacle is that these compounds do not accumulate in appreciable quantities in situ and, moreover, there are no standards for them. The determination of the enzymatic activities of red chlorophyll catabolite reductase (RCCR) and pheophorbide a monoxygenase (PAO) also helps to monitor the appearance of colorless derivatives since they are the key enzymes responsible for the loss of green color. ... [Pg.440]

Hentschel, P. et ah. Structure elucidation of deoxylutein 11 isomers by on-line capillary high performance liquid chromatography- H nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1112, 285, 2006. [Pg.477]

Giusti, M.M., Ghanadan, H., and Wrolstad, R.E., Elucidation of the structure and conformation of red radish Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques, J. Agric. Food Chem., 46, 4858, 1998. [Pg.505]

Godejohann M, M Astratov, A Preiss, K Levsen, C Miigge (1998) Application of continuous-flow HPLC-proton-nuclear magnetic resonance spectroscopy and HPLC-thermospray spectroscopy for the structrual elucidation of phototransformation products of 2,4,6-trinitrotoluene. Anal Chem 70 4104-4110. [Pg.41]

A number of techniques have been employed that are capable of giving information about amorphous phases. These include infrared spectroscopy, especially the use of the attenuated total reflection (ATR) or Fourier transform (FT) techniques. They also include electron probe microanalysis, scanning electron microscopy, and nuclear magnetic resonance (NMR) spectroscopy. Nor are wet chemical methods to be neglected for they, too, form part of the armoury of methods that have been used to elucidate the chemistry and microstructure of these materials. [Pg.359]

Nuclear magnetic resonance (NMR) spectroscopy is, next to X-ray diffraction, the most important method to elucidate molecular structures of small molecules up to large bio macromolecules. It is used as a routine method in every chemical laboratory and it is not the aim of this article to give a comprehensive review about NMR in structural analysis. We will concentrate here on liquid-state applications with respect to drugs or drug-like molecules to emphasize techniques for conformational analysis including recent developments in the field. [Pg.208]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

Nuclear magnetic resonance (NMR) spectroscopy in pharmaceutical research has been used primarily in a classical, organic chemistry framework. Typical studies have included (1) the structure elucidation of compounds [1,2], (2) investigating chirality of drug substances [3,4], (3) the determination of cellular metabolism [5,6], and (4) protein studies [7-9], to name but a few. From the development perspective, NMR is traditionally used again for structure elucidation, but also for analytical applications [10]. In each case, solution-phase NMR has been utilized. It seems ironic that although —90% of the pharmaceutical products on the market exist in the solid form, solid state NMR is in its infancy as applied to pharmaceutical problem solving and methods development. [Pg.94]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

Mass spectrometry is an analytical technique to measure molecular masses and to elucidate the structure of molecules by recording the products of their ionization. The mass spectrum is a unique characteristic of a compound. In general it contains information on the molecular mass of an analyte and the masses of its structural fragments. An ion with the heaviest mass in the spectrum is called a molecular ion and represents the molecular mass of the analyte. Because atomic and molecular masses are simple and well-known parameters, a mass spectrum is much easier to understand and interpret than nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV), or other types of spectra obtained with various physicochemical methods. Mass spectra are represented in graphic or table format (Fig. 5.1). [Pg.119]

Although Eibner elucidated the structure between 1904 and 1906, it was only through IR and nuclear magnetic resonance spectroscopy (NMR) that the chro-maticity of these molecules could be attributed to keto-enol tautomerism and simultaneous hydrogen bond formation (structures 137a = 137b) [2]. [Pg.537]

A solution-state and solid-state nuclear magnetic resonance study of the complex and its separate components in both their neutral and ionized (TMP hydrochloride and SMZ sodium salt) forms was undertaken in order to elucidate the TMP-SMZ interactions. Inspection of the data for the complex in the solid state shows that the 13C chemical shifts are consistent with the ionic structure proposed by Nakai and coworkers105 (14). Stabilization of the complex is achieved by the resulting ionic interaction and by the formation of two intermolecular hydrogen bonds. [Pg.324]

The fourth chapter in this volume, contributed by Helmut Duddeck, is an exceptionally thorough survey of substituent effects on carbon-13 nuclear magnetic resonance (NMR) chemical shifts. Organic chemists and others who are routinely dependent on 13C NMR for structure elucidation and for information about stereochemistry will welcome the summary presented here. Although... [Pg.351]

Following hits, the lead compounds are purihed using chromatographic techniques and their chemical compositions are identihed via spectroscopic and chemical means. Structures may be elucidated using X-ray or nuclear magnetic resonance (NMR) methods. [Pg.58]


See other pages where Nuclear magnetic resonance elucidation is mentioned: [Pg.214]    [Pg.352]    [Pg.265]    [Pg.24]    [Pg.455]    [Pg.338]    [Pg.177]    [Pg.468]    [Pg.304]    [Pg.5]    [Pg.85]    [Pg.475]    [Pg.707]    [Pg.427]    [Pg.263]    [Pg.237]    [Pg.190]    [Pg.142]    [Pg.268]    [Pg.4]    [Pg.292]    [Pg.391]    [Pg.158]    [Pg.213]    [Pg.121]    [Pg.500]    [Pg.76]    [Pg.306]    [Pg.352]   
See also in sourсe #XX -- [ Pg.392 ]




SEARCH



Elucidation

© 2024 chempedia.info