Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non-metallic solution

Recently, diamond synthesis has been successfully performed under high-temperature, high-pressure conditions in a system using kimberlite powder, various carbonates, sulphates or water as the solvent [13], [14]. Higher pressure and temperature conditions are required in a non-metallic solution than in a metallic solution, and the crystals obtained are mainly simple octahedral, differing from those observed in crystals grown from metallic solutions. Crystals synthesized in a non-metallic solution show the same characteristics as natural diamond Tracht. These observations indicate that the solvent components have a definitive effect upon surface reconstruction, and thus on the morphology of the crystals. [Pg.184]

TaUe 1 Solvation enthalpies for non-metal solutes in liquid alkali metals... [Pg.3]

M. S. Kharash and O. Reinmuth, Grignard Reactions of Non-metallic Solutions, ... [Pg.362]

Color. The most remarkable property of metal-ammonia solutions is their color. In dilute solutions the color is blue, as is also found for solutions in methylamine and other amines. In concentrated solutions, the solution has a metallic copper-like appearance and reflects light at normal incidence much more than the non-metallic solutions and liquids. [Pg.305]

Iron combines with most non-metals on heating, and forms the oxides Fe203 and (mainly) Fej04 when heated in air above 430 K. Steam above 8(X) K produces the oxide Fe304 and hydrogen. Iron dissolves in most dilute acids, giving iron(II) solutions, i.e. [Pg.392]

W. L. Jolly and C. J. Hallada, Liquid ammonia. Chap. 1 in T. C. WaDDINGTON (ed.), Non-aqueous Solvent Systems, pp. 1-45, Academic Press, London, 1965. J. C. Thompson, The physical properties of metal solutions in non-aqueous solvents. Chap. 6 in J. Lagowski (ed.). The Chemistry of Non-aqueous Solvents, Vol. 2, pp. 265-317, Academic Press, New York, 1967. J. Jander (ed.). Chemistry in Anhydrous Liquid Ammonia, Wiley, Interscience, New York, 1966, 561 pp. [Pg.77]

The heavier alkaline earth metals Ca, Sr, Ba (and Ra) react even more readily with non-metals, and again the direct formation of nitrides M3N2 is notable. Other products are similar though the hydrides are more stable (p. 65) and the carbides less stable than for Be and Mg. There is also a tendency, previously noted for the alkali metals (p. 84), to form peroxides MO2 of increasing stability in addition to the normal oxides MO. Calcium, Sr and Ba dissolve in liquid NH3 to give deep blue-black solutions from which lustrous, coppery, ammoniates M(NH3)g can be recovered on evaporation these ammoniates gradually decompose to the corresponding amides, especially in the presence of catalysts ... [Pg.113]

The Group 13 metals differ sharply from the non-metallic element boron both in their greater chemical reactivity at moderate temperatures and in their well-defined cationic chemistry for aqueous solutions. The absence of a range of... [Pg.224]

Numerous metal azides have been characterized (p. 417) and covalent derivatives of non-metals are also readily preparable by simple metathesis using either NaN3 or aqueous solutions of... [Pg.433]

In 1826 J. J. Berzelius found that acidification of solutions containing both molybdate and phosphate produced a yellow crystalline precipitate. This was the first example of a heteropolyanion and it actually contains the phos-phomolybdate ion, [PMoi204o] , which can be used in the quantitative estimation of phosphate. Since its discovery a host of other heteropolyanions have been prepared, mostly with molybdenum and tungsten but with more than 50 different heteroatoms, which include many non-metals and most transition metals — often in more than one oxidation state. Unless the heteroatom contributes to the colour, the heteropoly-molybdates and -tungstates are generally of varying shades of yellow. The free acids and the salts of small cations are extremely soluble in water but the salts of large cations such as Cs, Ba" and Pb" are usually insoluble. The solid salts are noticeably more stable thermally than are the salts of isopolyanions. Heteropoly compounds have been applied extensively as catalysts in the petrochemicals industry, as precipitants for numerous dyes with which they form lakes and, in the case of the Mo compounds, as flame retardants. [Pg.1014]

Because of possible catalytic and biological relevance of metal-sulfur clusters, several such compounds of cobalt have been prepared. The action of H2S or M2S (M = alkali metal) on a non-aqueous solution of a convenient cobalt compound (often containing, or in the presence of, a phosphine) is a typical route. Diamagnetic [Co6Ss(PR3)6] (R = Et, Ph) comprise an octahedral array of metal atoms (Co-Co in the range 281.7 to 289.4pm), all faces capped by atoms,and show facile redox behaviour... [Pg.1119]

Carbon dioxide produces a solution of carbonic acid (as in boiler condensate, see Section 53.3.2). Carbon steel is often employed but corrosion rates of up to 1 mm/yr can be encountered. Coatings and non-metallic materials may be employed up to their temperature limits (Section 53.5.6). Basic austenitic stainless steels (type 534) are suitable up to their scaling temperatures. [Pg.899]

The scope of the term corrosion is continually being extended, and Fontana and Staehle have stated that corrosion will include the reaction of metals, glasses, ionic solids, polymeric solids and composites with environments that embrace liquid metals, gases, non-aqueous electrolytes and other non-aqueous solutions . [Pg.6]

Dissolution of metals in non-aqueous solutions (e.g. reaction of aluminium with carbon tetrachloride). [Pg.20]

Reactions with aqueous solutions. Uniform dissolution or corrosion of metals in acid, alkaline or neutral solutions (e.g. dissolution of zinc in hydrochloric acid or in caustic soda solution general corrosion of zinc in water or during atmospheric exposure). Reactions with non-aqueous solution (e.g. dissolution of copper in a solution of ammonium acetate and bromine in alcohol). [Pg.20]

All reactions of metals in aqueous or non-aqueous solutions or in fused salts where one area of the metal surface is predominantly anodic and the other is predominantly cathodic so that the sites are physically identifiable. [Pg.20]

Non-metallic materials can provide cost-effective and secure solutions... [Pg.74]

Aqueous solutions of non-electrolytes, especially of non-polar solutes, may show the reverse effect and increase the proportions of ice-like components. The non-polar part of organic electrolytes such as soaps and wetting agents may predominate in increasing the ice component. Thus solutes can be divided into two classes structure making and structure breaking, and in some metal-finishing process solutions both types of solute may be added. [Pg.342]

Principles The reduction reaction is controlled essentially by the usual kinetic factors such as concentration of reactants, temperature, agitation, catalysts, etc. Where the reaction is vigorous, as, for example, when a powerful reducing agent like hydrazine is used, wasteful precipitation of A/, may occur throughout the whole plating solution followed by deposition on all exposed metallic and non-metallic surfaces which can provide favourable nucleation sites. In order to restrict deposition and aid adhesion, the selected areas are pre-sensitised after cleaning the sensitisers used are often based on noble metal salts. [Pg.435]

The calomel electrode Hg/HgjClj, KCl approximates to an ideal non-polarisable electrode, whilst the Hg/aqueous electrolyte solution electrode approximates to an ideal polarisable electrode. The electrical behaviour of a metal/solution interface may be regarded as a capacitor and resistor in parallel (Fig. 20.23), and on the basis of this analogy it is possible to distinguish between a completely polarisable and completely non-polarisable... [Pg.1244]

CO adsorption on electrochemically facetted (Clavilier), 135 Hamm etal, 134 surfaces (Hamm etal), 134 Platinum group metals in aqueous solutions, 132 and Frumkin s work on the potential of zero charge thereon, 129 Iwasita and Xia, 133 and non-aqueous solutions, 137 potentials of zero charge, 132, 137 preparation of platinum single crystals (Iwasita and Xia), 133 Platinum-DMSO interfaces, double layer structure, 141 Polarization time, 328 Polarons, 310... [Pg.637]


See other pages where Non-metallic solution is mentioned: [Pg.2]    [Pg.869]    [Pg.2]    [Pg.869]    [Pg.425]    [Pg.21]    [Pg.160]    [Pg.182]    [Pg.296]    [Pg.51]    [Pg.224]    [Pg.424]    [Pg.442]    [Pg.1236]    [Pg.232]    [Pg.8]    [Pg.9]    [Pg.21]    [Pg.813]    [Pg.945]    [Pg.1159]    [Pg.1231]    [Pg.1232]    [Pg.1271]    [Pg.272]    [Pg.336]    [Pg.376]    [Pg.758]    [Pg.125]    [Pg.634]    [Pg.639]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Metal solutions

Non-metallics

Non-metals

Solutions metallic

© 2024 chempedia.info